The conjugate-operator model for a~dynamic problem of the plate theory
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 299-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, according to hypotheses of a technical theory of their plates the equations, making up the mathematical model of the dynamic problem of elasticity theory, are averaged on the operator level. As a result, the conjugate-operator model of the dynamic problem of the theory of plates has been obtained, its possible statements being formulated, and approaches to their numerical realization being discussed. The efficient difference schemes (local-one-dimensional) for the statement “velocities-moments” are substantiated.
@article{SJVM_2003_6_3_a7,
     author = {S. B. Sorokin},
     title = {The conjugate-operator model for a~dynamic problem of the plate theory},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {299--311},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a7/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - The conjugate-operator model for a~dynamic problem of the plate theory
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 299
EP  - 311
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a7/
LA  - ru
ID  - SJVM_2003_6_3_a7
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T The conjugate-operator model for a~dynamic problem of the plate theory
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 299-311
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a7/
%G ru
%F SJVM_2003_6_3_a7
S. B. Sorokin. The conjugate-operator model for a~dynamic problem of the plate theory. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 299-311. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a7/

[1] Konovalov A. N., Sorokin S. B., Struktura uravnenii teorii uprugosti. Staticheskaya zadacha, Preprint AN SSSR. Sib. otd-nie. VTs; 665, Novosibirsk, 1986, 26 pp. | MR

[2] Konovalov A. N., “Chislennye metody v staticheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 36:3 (1995), 573–589 | MR | Zbl

[3] Konovalov A. N., “Chislennye metody v dinamicheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 38:3 (1997), 551–568 | MR | Zbl

[4] Sorokin S. B., Sopryazhenno-faktorizovannye modeli v teorii plastin, Preprint AN SSSR. Sib. otd-nie. VTs; 1069, Novosibirsk, 1996, 16 pp. | MR

[5] Sorokin S. B., “Conjugate-factorized models in plate theory”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. – - Novosibirsk, 2:1 (1999), 81–88 | MR | Zbl

[6] Landau L. D., Lifshits E. M., Teoriya uprugosti, Nauka, M., 1987 | MR | Zbl

[7] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[8] Timoshenko S. P., Kurs teorii uprugosti, Naukova dumka, Kiev, 1972

[9] Bukenov M. M., Kuznetsov Yu. A., Ob odnoi spektralnoi zadache teorii uprugosti, Preprint AN SSSR. Sib. otd-nie. VTs; 81, Novosibirsk, 1981, 13 pp. | MR

[10] Arbash Zh., Kobelkov G. M., “Numerical methods for solving elasticity theory problems with strongly varying coefficients”, Russian J. Numer. Anal. and Math. Modelling, 8:5 (1993), 371–384 | DOI | MR

[11] Filin A. N., Prikladnaya mekhanika tverdogo deformiruemogo tela, T. 2, Nauka, M., 1978

[12] Umanskii S. E., Optimizatsiya priblizhennykh metodov resheniya kraevykh zadach mekhaniki, Naukova dumka, Kiev, 1983 | MR

[13] Bezukhov N. I., Osnovy teorii uprugosti, plastichnosti i polzuchesti, Vysshaya shkola, M., 1968

[14] Timoshenko S. P., Kolebaniya v inzhenernom dele, Gos. izd-vo fiz.-mat. literatury, M., 1959

[15] Konovalov A. N., “Dinamicheskaya zadacha teorii uprugosti v postanovke “skorosti-napryazheniya””, Differents. uravneniya, 35:2 (1999), 238–248 | MR | Zbl

[16] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl