On orthogonal decomposition of space in spline-fitting problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 291-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special orthogonal decomposition of a basic space for an abstract quasi-spline-fitting problem is proposed. Using this decomposition, a theorem on representation of smoothing quasi-spline $\sigma_{\alpha}$ is proved. Exact in order convergence estimates of $\sigma_{\alpha}$ to the limit quasi-splines $\sigma_0$ and $\sigma_{\infty}$ are obtained. The monotony and the upper convexity of the function $\psi^{-1}(\beta)$, used in the algorithm of selection of the smoothing parameter $\alpha$ by the residual criterion, are proved.
@article{SJVM_2003_6_3_a6,
     author = {A. I. Rozhenko},
     title = {On orthogonal decomposition of space in spline-fitting problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {291--297},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/}
}
TY  - JOUR
AU  - A. I. Rozhenko
TI  - On orthogonal decomposition of space in spline-fitting problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 291
EP  - 297
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/
LA  - ru
ID  - SJVM_2003_6_3_a6
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%T On orthogonal decomposition of space in spline-fitting problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 291-297
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/
%G ru
%F SJVM_2003_6_3_a6
A. I. Rozhenko. On orthogonal decomposition of space in spline-fitting problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 291-297. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/

[1] Reinsch C. H., “Smoothing by spline functions”, Numer. Math., 10:3 (1967), 177–183 | DOI | MR | Zbl

[2] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka. Sib. otd-nie, Novosibirsk, 1983 | MR

[3] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[4] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of the Novosibirsk Computing Center, Num. Anal., , Special issue 3, NCC Publisher, Novosibirsk, 1993

[5] Gordonova V. I., Morozov V. A., “Chislennye algoritmy vybora parametra v metode regulyarizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 13:3 (1973), 539–545 | MR

[6] Bezhaev A. Yu., “Metody rascheta optimalnogo parametra sglazhivaniya pri postroenii variatsionnogo splaina”, Variatsionnye metody v zadachakh chislennogo analiza, AN SSSR. Sib. otd-nie. VTs, Novosibirsk, 1991, 3–26

[7] Rozhenko A. I., “On optimal choice of spline-smoothing parameter”, Bull. of the Novosibirsk Computing Center. Series: Num. Anal., 7, NCC Publisher, Novosibirsk, 1996, 79–86

[8] Rozhenko A. I., Abstraktnaya teoriya splainov, Izd. tsentr NGU, Novosibirsk, 1999

[9] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975