On orthogonal decomposition of space in spline-fitting problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 291-297

Voir la notice de l'article provenant de la source Math-Net.Ru

A special orthogonal decomposition of a basic space for an abstract quasi-spline-fitting problem is proposed. Using this decomposition, a theorem on representation of smoothing quasi-spline $\sigma_{\alpha}$ is proved. Exact in order convergence estimates of $\sigma_{\alpha}$ to the limit quasi-splines $\sigma_0$ and $\sigma_{\infty}$ are obtained. The monotony and the upper convexity of the function $\psi^{-1}(\beta)$, used in the algorithm of selection of the smoothing parameter $\alpha$ by the residual criterion, are proved.
@article{SJVM_2003_6_3_a6,
     author = {A. I. Rozhenko},
     title = {On orthogonal decomposition of space in spline-fitting problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {291--297},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/}
}
TY  - JOUR
AU  - A. I. Rozhenko
TI  - On orthogonal decomposition of space in spline-fitting problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 291
EP  - 297
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/
LA  - ru
ID  - SJVM_2003_6_3_a6
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%T On orthogonal decomposition of space in spline-fitting problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 291-297
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/
%G ru
%F SJVM_2003_6_3_a6
A. I. Rozhenko. On orthogonal decomposition of space in spline-fitting problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 291-297. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a6/