A high order numerical method for the integral Volterra equations with weak singularity
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 181-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of numerical solution of the linear integral Volterra equations with high accuracy, based on approximation of integrals by quadratures independent of the kernel values is proposed. This approach does allow to numerically solve special integral equations, for example, the equations with slightly singular kernels. The main idea of the method is to expand a sought for function by the Taylor formula and to use the kernel moments at the subgrid points to find the matrix of the quadrature coefficients. The dependence of the approximation constant on the number of the subgrid points is analyzed. It is shown that the constant exponentially decreases. An estimate of the solution error for a problem with perturbations of the kernel and the right-hand side is found. The theorem of convergence for the second kind Volterra equations is proved.
@article{SJVM_2003_6_2_a7,
     author = {A. O. Savchenko},
     title = {A high order numerical method for the integral {Volterra} equations with weak singularity},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {181--195},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a7/}
}
TY  - JOUR
AU  - A. O. Savchenko
TI  - A high order numerical method for the integral Volterra equations with weak singularity
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 181
EP  - 195
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a7/
LA  - ru
ID  - SJVM_2003_6_2_a7
ER  - 
%0 Journal Article
%A A. O. Savchenko
%T A high order numerical method for the integral Volterra equations with weak singularity
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 181-195
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a7/
%G ru
%F SJVM_2003_6_2_a7
A. O. Savchenko. A high order numerical method for the integral Volterra equations with weak singularity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a7/

[1] Verlan A. F., Sizikov B. C., Integralnye uravneniya: metody, algoritmy, programmy, Naukova Dumka, Kiev, 1986 | MR

[2] De Hoog F., Weiss R., “Implicit Runge–Kutta methods for second kind Volterra integral equations”, Numer. Math., 23:3 (1975), 199–213 | DOI | MR | Zbl

[3] De Hoog F., Weiss R., “On the solution of Volterra integral equations of the first kind”, Numer. Math., 21:1 (1973), 22–32 | DOI | MR | Zbl

[4] Savchenko A. O., “Reshenie integralnykh uravnenii Volterra I roda neyavnym metodom Runge–Kutty vysokogo poryadka”, Trudy konferentsii molodykh uchenykh VTs SO RAN, Novosibirsk, 1996, 109–126

[5] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[6] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967 | MR

[7] Henrici P., Discrete variable methods in ordinary differential equations, John Wiley, New York, 1962 | MR | Zbl

[8] Savchenko A. O., “Optimalnye kvadratury dlya resheniya integralnykh uravnenii Volterra i zadachi Koshi”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4:2 (2001), 179–184 | MR | Zbl

[9] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit., M., 1960

[10] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976 | MR

[11] Brunner H., Pedas A., Vainikko G., “The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations”, Math. of Comp., 68:227 (1999), 1079–1095 | DOI | MR | Zbl

[12] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR