@article{SJVM_2003_6_1_a6,
author = {Daniele Funaro},
title = {Superconsistent discretizations with application to hyperbolic equation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {89--99},
year = {2003},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a6/}
}
Daniele Funaro. Superconsistent discretizations with application to hyperbolic equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 89-99. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a6/
[1] Funaro D., Spectral Elements for Transport-Dominated Equations, LNCS, 1, Springer, 1997 | MR
[2] Funaro D., “A note on second-order finite-difference schemes on uniform meshes for advectiondiffusion equations”, Num. Meth. PDEs, 15 (1999), 581–588 | MR | Zbl
[3] Funaro D., “Superconsistent discretizations”, J. of Scientific Computing, 17:1–4 (2002), 67–79 | DOI | MR | Zbl
[4] Funaro D., Pontrelli G., A general class of finite-difference methods for the linear transport equation (to appear)
[5] Godunov S. K., Ryabenkii V. S., Difference Schemes: an Introduction to the Underlying Theory, North Holland, New York, 1987 | MR | Zbl
[6] Il'in A. M., “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Math. Notes Acad. Sci. USSR, 6 (1969), 596–602 | DOI | MR
[7] Strikwerda J. C., Finite Difference Schemes and Partial Differential Equations, Chapman Hall, 1989 | MR