Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2003_6_1_a3, author = {V. \`E. Gheit}, title = {On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {37--57}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/} }
TY - JOUR AU - V. È. Gheit TI - On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part) JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 37 EP - 57 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/ LA - ru ID - SJVM_2003_6_1_a3 ER -
V. È. Gheit. On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 37-57. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/
[1] Korkin A. N., Zolotarev G. I., “Sur une certain minimum”, Nouv. Ann. de Math. Ser. 2, 12 (1873), 337–355
[2] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (vtoroe soobschenie)”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4:2 (2001), 123–136
[3] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[4] Peherstorfer F., “Erweiterung des Satzes von Markoff: Linear Spaces and Approximation”, Proc. of Conf. (Oberwolfach, 1977), International Series of Numerical Mathematics, 40, Birkhäuser, Basel–Stuttgart, 1978, 423–431 | MR
[5] Peherstorfer F., Lineare und nichtlineare $L^1$-Approximation, Dissertation, Wien, 1978 | Zbl
[6] Geit V. E., “Klassifikatsiya polinomov s naimenshei integralnoi normoi po chetyrem ikh starshim koeffitsientam”, Trudy matem. tsentra im. N. I. Lobachevskogo, 8, Izd-vo DAS, Kazan, 2001, 69–71
[7] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Dokl. RAN, 370:5 (2000), 583–586 | MR | Zbl
[8] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 2:3 (1999), 223–238
[9] Geit V. E., Reshenie $L$-problemy Zolotareva v odnom chastnom sluchae, 27.11.98, No 3492-V98, VINITI, M., 1998
[10] Geit V. E., “Polinomy naimenshego integralnogo ukloneniya ot nulya s pyatyu predpisannymi starshimi koeffitsientami”, Tr. NII im. N. G. Chebotareva, Tez. dokl., KGU, Kazan, 2000
[11] Peherstorfer F., “On the representation of extremal functions in the $L^1$-norm”, Journal Approx. Theory, 27:1 (1979), 61–75 | DOI | MR | Zbl
[12] Faddeev D. A., Lektsii po algebre, Nauka, M., 1984 | MR
[13] Postnikov M. M., Analiticheskaya geometriya, Nauka, M., 1973 | MR | Zbl
[14] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, Nauka, M., 1977
[15] Peherstorfer F., “Orthogonal Polynomials in $L^1$-Approximation”, J. of Approx. Theory, 52:3 (1988), 241–268 | MR | Zbl