On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 37-57

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is the sequel of the results of the second part [2]. The theorems stated in [6] have been proved. These theorems contain the characterization of points of the sets $D_i(n,4)$, $i=\overline{1,4}$, from [2, Theorem 2.2] and present a final classification of polynomials, which are the least deviating from zero in themetric $L[-1,1]$ with four prescribed leading coefficients.
@article{SJVM_2003_6_1_a3,
     author = {V. \`E. Gheit},
     title = {On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/}
}
TY  - JOUR
AU  - V. È. Gheit
TI  - On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 37
EP  - 57
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/
LA  - ru
ID  - SJVM_2003_6_1_a3
ER  - 
%0 Journal Article
%A V. È. Gheit
%T On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 37-57
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/
%G ru
%F SJVM_2003_6_1_a3
V. È. Gheit. On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 37-57. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/