On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 37-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is the sequel of the results of the second part [2]. The theorems stated in [6] have been proved. These theorems contain the characterization of points of the sets $D_i(n,4)$, $i=\overline{1,4}$, from [2, Theorem 2.2] and present a final classification of polynomials, which are the least deviating from zero in themetric $L[-1,1]$ with four prescribed leading coefficients.
@article{SJVM_2003_6_1_a3,
     author = {V. \`E. Gheit},
     title = {On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/}
}
TY  - JOUR
AU  - V. È. Gheit
TI  - On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 37
EP  - 57
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/
LA  - ru
ID  - SJVM_2003_6_1_a3
ER  - 
%0 Journal Article
%A V. È. Gheit
%T On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 37-57
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/
%G ru
%F SJVM_2003_6_1_a3
V. È. Gheit. On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 37-57. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/

[1] Korkin A. N., Zolotarev G. I., “Sur une certain minimum”, Nouv. Ann. de Math. Ser. 2, 12 (1873), 337–355

[2] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (vtoroe soobschenie)”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4:2 (2001), 123–136

[3] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[4] Peherstorfer F., “Erweiterung des Satzes von Markoff: Linear Spaces and Approximation”, Proc. of Conf. (Oberwolfach, 1977), International Series of Numerical Mathematics, 40, Birkhäuser, Basel–Stuttgart, 1978, 423–431 | MR

[5] Peherstorfer F., Lineare und nichtlineare $L^1$-Approximation, Dissertation, Wien, 1978 | Zbl

[6] Geit V. E., “Klassifikatsiya polinomov s naimenshei integralnoi normoi po chetyrem ikh starshim koeffitsientam”, Trudy matem. tsentra im. N. I. Lobachevskogo, 8, Izd-vo DAS, Kazan, 2001, 69–71

[7] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Dokl. RAN, 370:5 (2000), 583–586 | MR | Zbl

[8] Geit V. E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 2:3 (1999), 223–238

[9] Geit V. E., Reshenie $L$-problemy Zolotareva v odnom chastnom sluchae, 27.11.98, No 3492-V98, VINITI, M., 1998

[10] Geit V. E., “Polinomy naimenshego integralnogo ukloneniya ot nulya s pyatyu predpisannymi starshimi koeffitsientami”, Tr. NII im. N. G. Chebotareva, Tez. dokl., KGU, Kazan, 2000

[11] Peherstorfer F., “On the representation of extremal functions in the $L^1$-norm”, Journal Approx. Theory, 27:1 (1979), 61–75 | DOI | MR | Zbl

[12] Faddeev D. A., Lektsii po algebre, Nauka, M., 1984 | MR

[13] Postnikov M. M., Analiticheskaya geometriya, Nauka, M., 1973 | MR | Zbl

[14] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, Nauka, M., 1977

[15] Peherstorfer F., “Orthogonal Polynomials in $L^1$-Approximation”, J. of Approx. Theory, 52:3 (1988), 241–268 | MR | Zbl