On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 37-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper is the sequel of the results of the second part [2]. The theorems stated in [6] have
been proved. These theorems contain the characterization of points of the sets $D_i(n,4)$, $i=\overline{1,4}$, from [2, Theorem 2.2] and present a final classification of polynomials, which are the least deviating from zero in themetric $L[-1,1]$ with four prescribed leading coefficients.
@article{SJVM_2003_6_1_a3,
author = {V. \`E. Gheit},
title = {On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {37--57},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/}
}
TY - JOUR AU - V. È. Gheit TI - On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part) JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 37 EP - 57 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/ LA - ru ID - SJVM_2003_6_1_a3 ER -
V. È. Gheit. On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 37-57. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a3/