The use of quantum computer for global the integral estimation depending on a~parameter
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 381-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some aspects of application of the quantum algorithms for estimation of integrals are considered. The new quantum algorithms for the global estimation of the integral which is dependent on a parameter are presented. The upper bounds of errors of the presented algorithms are obtained in $C$-metrics. The optimal relations between parameters of these algorithms are obtained. The comparison of computational costs of the quantum functional algorithms and Monte-Carlo functional algorithms is made.
@article{SJVM_2002_5_4_a6,
     author = {E. V. Shkarupa},
     title = {The use of quantum computer for global the integral estimation depending on a~parameter},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {381--394},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/}
}
TY  - JOUR
AU  - E. V. Shkarupa
TI  - The use of quantum computer for global the integral estimation depending on a~parameter
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 381
EP  - 394
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/
LA  - ru
ID  - SJVM_2002_5_4_a6
ER  - 
%0 Journal Article
%A E. V. Shkarupa
%T The use of quantum computer for global the integral estimation depending on a~parameter
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 381-394
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/
%G ru
%F SJVM_2002_5_4_a6
E. V. Shkarupa. The use of quantum computer for global the integral estimation depending on a~parameter. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 381-394. http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/

[1] Benioff P., “The computer as physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines”, J. Stat. Phys., 22 (1980), 563–591 | DOI | MR

[2] Feynman R. P., “Simulating physics with computers”, Int. J. Theoretical Physics, 21 (1982), 467 | DOI | MR

[3] Shor P., Algorithms for quantum computation: Discrete logarithms and factoring, Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994, 124–134 ; http://arXiv.org/abs/quant-ph/9508027 | MR

[4] Grover L., “A fast quantum mechanical algorithm for database search”, On the Theory of Computing, Proceedings of 28th Annual ACM Symposium, ACM Press, New York, 212–219 | MR | Zbl

[5] Ekert A., Hayden P., Inamori H., Basic concepts in quantum computation, , 2000 http://arXiv.org/abs/quant-ph/0011013

[6] Boyer M., Brassard G., Hoyer P., Tapp A., “Tight bound on quantum searching”, Special issue on quantum computing and quantum cryptography, Fortschritte Der Physik, 46 (1998), 493–505 ; http://arXiv.org/abs/quant-ph/9605034 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Brassard G., Hoyer P., Mosca M., Tapp A., Quantum Amplitude Amplification and Estimation, http://arXiv.org/abs/quant-ph/0005055 | MR

[8] Heinrich S., “Quantum Summation with an Application to Integration”, J. Complexity, 18 (2002), 1–50 | DOI | MR | Zbl

[9] Traub J. F., Wasilkowski G. W., Wozniakowski H., Information-based complexity, Academic Press, New York, 1988 | MR | Zbl

[10] Novak E., “Quantum complexity of integration”, J. Complexity, 17, 2–16 | DOI | MR | Zbl

[11] Heinrich S., Novak E., Optimal Summation and Integration by Deterministic Randomized and Quantum Algorithms, to be published

[12] Voitishek A. V., “Asimptotika skhodimosti diskretno-stokhasticheskikh chislennykh metodov globalnoi otsenki resheniya integralnogo uravneniya vtorogo roda”, Sib. mat. zhurn., 35:4 (1994), 728–736 | MR | Zbl

[13] Voitishek A. V., “Diskretno-stokhasticheskie protsedury otsenki integrala, zavisyaschego ot parametra”, Zhurn. vychisl. matem. i mat. fiziki, 36:8 (1996), 23–38 | MR | Zbl

[14] Voitishek A. V., Shkarupa E. V., Diskretno-stokhasticheskie protsedury globalnoi otsenki resheniya integralnogo uravneniya vtorogo roda. Optimizatsiya, Preprint RAN. Sib. otd-nie. VTs; 1091, Novosibirsk, 1997 | MR

[15] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[16] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[17] Voitishek A. V., Prigarin S. M., “O funktsionalnoi skhodimosti otsenok i modelei v metode Monte-Karlo”, Zhurn. vychisl. matem. i mat. fiziki, 32:10 (1992), 1641–1651 | MR

[18] Heinrich S., “A multilevel version of the method of dependent tests”, Proceedings of the Third Petersburg Workshop on Simulation, St. Petersburg, 1998, 31–35