The use of quantum computer for global the integral estimation depending on a parameter
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 381-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some aspects of application of the quantum algorithms for estimation of integrals are considered. The new quantum algorithms for the global estimation of the integral which is dependent on a parameter are presented. The upper bounds of errors of the presented algorithms are obtained in $C$-metrics. The optimal relations between parameters of these algorithms are obtained. The comparison of computational costs of the quantum functional algorithms and Monte-Carlo functional algorithms is made.
@article{SJVM_2002_5_4_a6,
     author = {E. V. Shkarupa},
     title = {The use of quantum computer for global the integral estimation depending on a~parameter},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {381--394},
     year = {2002},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/}
}
TY  - JOUR
AU  - E. V. Shkarupa
TI  - The use of quantum computer for global the integral estimation depending on a parameter
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 381
EP  - 394
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/
LA  - ru
ID  - SJVM_2002_5_4_a6
ER  - 
%0 Journal Article
%A E. V. Shkarupa
%T The use of quantum computer for global the integral estimation depending on a parameter
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 381-394
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/
%G ru
%F SJVM_2002_5_4_a6
E. V. Shkarupa. The use of quantum computer for global the integral estimation depending on a parameter. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 381-394. http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a6/

[1] Benioff P., “The computer as physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines”, J. Stat. Phys., 22 (1980), 563–591 | DOI | MR

[2] Feynman R. P., “Simulating physics with computers”, Int. J. Theoretical Physics, 21 (1982), 467 | DOI | MR

[3] Shor P., Algorithms for quantum computation: Discrete logarithms and factoring, Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994, 124–134 ; http://arXiv.org/abs/quant-ph/9508027 | MR

[4] Grover L., “A fast quantum mechanical algorithm for database search”, On the Theory of Computing, Proceedings of 28th Annual ACM Symposium, ACM Press, New York, 212–219 | MR | Zbl

[5] Ekert A., Hayden P., Inamori H., Basic concepts in quantum computation, , 2000 http://arXiv.org/abs/quant-ph/0011013

[6] Boyer M., Brassard G., Hoyer P., Tapp A., “Tight bound on quantum searching”, Special issue on quantum computing and quantum cryptography, Fortschritte Der Physik, 46 (1998), 493–505 ; http://arXiv.org/abs/quant-ph/9605034 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Brassard G., Hoyer P., Mosca M., Tapp A., Quantum Amplitude Amplification and Estimation, http://arXiv.org/abs/quant-ph/0005055 | MR

[8] Heinrich S., “Quantum Summation with an Application to Integration”, J. Complexity, 18 (2002), 1–50 | DOI | MR | Zbl

[9] Traub J. F., Wasilkowski G. W., Wozniakowski H., Information-based complexity, Academic Press, New York, 1988 | MR | Zbl

[10] Novak E., “Quantum complexity of integration”, J. Complexity, 17, 2–16 | DOI | MR | Zbl

[11] Heinrich S., Novak E., Optimal Summation and Integration by Deterministic Randomized and Quantum Algorithms, to be published

[12] Voitishek A. V., “Asimptotika skhodimosti diskretno-stokhasticheskikh chislennykh metodov globalnoi otsenki resheniya integralnogo uravneniya vtorogo roda”, Sib. mat. zhurn., 35:4 (1994), 728–736 | MR | Zbl

[13] Voitishek A. V., “Diskretno-stokhasticheskie protsedury otsenki integrala, zavisyaschego ot parametra”, Zhurn. vychisl. matem. i mat. fiziki, 36:8 (1996), 23–38 | MR | Zbl

[14] Voitishek A. V., Shkarupa E. V., Diskretno-stokhasticheskie protsedury globalnoi otsenki resheniya integralnogo uravneniya vtorogo roda. Optimizatsiya, Preprint RAN. Sib. otd-nie. VTs; 1091, Novosibirsk, 1997 | MR

[15] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[16] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[17] Voitishek A. V., Prigarin S. M., “O funktsionalnoi skhodimosti otsenok i modelei v metode Monte-Karlo”, Zhurn. vychisl. matem. i mat. fiziki, 32:10 (1992), 1641–1651 | MR

[18] Heinrich S., “A multilevel version of the method of dependent tests”, Proceedings of the Third Petersburg Workshop on Simulation, St. Petersburg, 1998, 31–35