Mathematical model of disperse medium to simulate attenuation of non-scattered radiation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 311-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model of a two-component random disperse medium was developed to simulate the attenuation of non-scattered radiation by disperse media. The model is based on the description of the distribution of disperse medium components along the line in the form of an alternating renewal process. Using this model, attenuation of the non-scattered radiation flux caused by a flat layer of mono-disperse sample medium with cubic and spherical grains was computed and compared to the results obtained with the effective cross-section method.
@article{SJVM_2002_5_4_a1,
     author = {G. N. Malyshkin},
     title = {Mathematical model of disperse medium to simulate attenuation of non-scattered radiation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {311--330},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a1/}
}
TY  - JOUR
AU  - G. N. Malyshkin
TI  - Mathematical model of disperse medium to simulate attenuation of non-scattered radiation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 311
EP  - 330
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a1/
LA  - ru
ID  - SJVM_2002_5_4_a1
ER  - 
%0 Journal Article
%A G. N. Malyshkin
%T Mathematical model of disperse medium to simulate attenuation of non-scattered radiation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 311-330
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a1/
%G ru
%F SJVM_2002_5_4_a1
G. N. Malyshkin. Mathematical model of disperse medium to simulate attenuation of non-scattered radiation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 311-330. http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a1/

[1] Khislavskii A. G., Plotnikov R. I., Kokhov E. D., “Pogloschenie rentgenovskogo izlucheniya neodnorodnymi sredami”, Zavodskaya laboratoriya, 39:6 (1973), 691–696

[2] Artsybashev V. A., Leman E. P., “Ob effektivnykh koeffitsientakh oslableniya fotonov v geterogennykh sredakh”, Atomnaya energiya, 44:1 (1978), 93–94

[3] Zhdanova V. M., Kostenko V. I., Krivolutskaya I. V., Potrebennikov G. K., “Sopostavlenie eksperimentalnykh i teoreticheskikh znachenii effektivnykh koeffitsientov oslableniya izlucheniya v monodispersnykh poglotitelyakh”, Atomnaya energiya, 59:4 (1985), 292–293

[4] Koks D., Smit V., Teoriya vosstanovleniya, Sovetskoe radio, M., 1967 | MR

[5] Ivchenko G. I., Kashtanov V. A., Kovalenko I. N., Teoriya massovogo obsluzhivaniya, Vysshaya shkola, M., 1982 | Zbl

[6] Korolyuk B. C., Portenko N. I., Skorokhod A. V., Turbin A. F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985 | MR | Zbl

[7] Ambartsumyan R. V., Mekke I., Shtoiyan D., Vvedenie v stokhasticheskuyu geometriyu, Nauka, M., 1989 | MR

[8] Shmakov V. M., “Effektivnye secheniya vzaimodeistviya fotonov s neodnorodnoi pogloschayuschei sredoi”, Voprosy atomnoi nauki i tekhniki. Ser. Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1988, no. 1, 74–79