Numerical solution to the vector tomography problem using polynomial basis
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 233-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of a reconstruction of a solenoidal part of a vector field in the circle is considered if its ray transform is known. Two variants of numerical solution of the problem are developed. In the first of them, a polynomial approximation of the vector field that was obtained by means of the least squares method contains an potential part. Thus a further step of solving the problem is to separate from the approximation a potential vector field by finding a solution for a homogeneous boundary value problem for the Poisson equation. Investigation of the structure of finite-dimensional subspaces of solenoidal and potential vector fields of the polynomial type allows to state a problem of determining of coefficients of the polynomial approximation of the potential part as the problem of step-by-step solving of a set of systems of linear equations of increasing dimensions. The second way consists in constructing subspaces of the basis polynomial solenoidal fields. In this case, the least squares method immediately gives a polynomial approximation of a solenoidal part of the vector field. Efficiency of the constructed algorithms is verified by the numerical simulation. The results of comparative test of the algorithms show that the accuracy of both algorithms is good and similar to one another.
@article{SJVM_2002_5_3_a3,
     author = {E. Yu. Derevtsov and I. G. Kashina},
     title = {Numerical solution to the vector tomography problem using polynomial basis},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {233--254},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a3/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - I. G. Kashina
TI  - Numerical solution to the vector tomography problem using polynomial basis
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 233
EP  - 254
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a3/
LA  - ru
ID  - SJVM_2002_5_3_a3
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A I. G. Kashina
%T Numerical solution to the vector tomography problem using polynomial basis
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 233-254
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a3/
%G ru
%F SJVM_2002_5_3_a3
E. Yu. Derevtsov; I. G. Kashina. Numerical solution to the vector tomography problem using polynomial basis. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 233-254. http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a3/

[1] Norton S. J., “Tomographic reconstruction of 2-D vector fields: application to flow imaging”, J. Geophys., 97 (1987), 161–168 | DOI

[2] Johnson S. A., Greenleaf J. P., Hansen C. R., Samayoa W. F., Tanaka M., Lent A., Christensen D. A., Wolley R. L., “Reconstruction three-dimentional fluid velocity vector fields from acoustic transmission measurements”, Acoustical Holography, 7, ed. Kessler L. W., Plenum Press, New York, 1977, 307–326

[3] Braun H., Hauck A., “Tomographic reconstruction of vector fields”, IEEE Transactions on Processing, 39:2 (1991), 464–471, February | DOI | MR | Zbl

[4] Sparr G., Strahlen K., Lindstrom K., Persson H. W., Doppler Tomography for Vector Fields, Publ. IOP Ltd., 1995

[5] Romanov V. G., Integral Geometry and Inverse Problems for Hyperbolic Equations, Springer, Berlin, 1974

[6] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Sibirskoe otdelenie, Novosibirsk, 1993 | MR | Zbl

[7] Bykhovskii E. B., “Reshenie smeshannoi zadachi dlya sistemy uravnenii Maksvella v sluchae idealno provodyaschei granitsy”, Vestnik LGU, 1957, no. 13, 50–66

[8] Derevtsov E. Yu., Kleshchev A. G., Sharafutdinov V. A., “Numerical solution of the emission 2D-tomography problem for a medium with absorption and refraction”, J. Inv. Ill-Posed Problems, 7:1 (1999), 83–103 | DOI | MR | Zbl

[9] Bezuglova M. A., Derevtsov E. Yu., Sorokin S. B., Reshenie zadachi vektornoi tomografii setochnymi metodami, Preprint / RAN. Sib. otd-nie. In-t matematiki; 81, Novosibirsk, 2000 | Zbl