Methods of investigation of queueing network with jumps of service rate
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 113-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equilibrium and the non-equilibrium behaviours of the uniform tandem with jump-like service rate in each queue are examined. The uniform tandem represents a specific multiplicative queueing network and involves a sequence of queues being identical with respect to customer's services. It is a suitable mathematical model providing analysis of the effect of the jump-like service rate on the probability-temporal measures related, in particular, to transient processes. For the equilibrium behaviour, the state space structure is determined, and the Laplace–Stieltjes transform of the cycle times distribution is obtained. For the non-equilibrium behaviour, the recurrence solution of the Kolmogorov differential equations is developed, the transient process time is evaluated, the integral and the phase trajectories for the respective Markov process are investigated.
@article{SJVM_2002_5_2_a2,
     author = {V. G. Belyakov and N. A. Miroshnichenko and E. V. Rubtsova},
     title = {Methods of investigation of queueing network with jumps of service rate},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {113--126},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/}
}
TY  - JOUR
AU  - V. G. Belyakov
AU  - N. A. Miroshnichenko
AU  - E. V. Rubtsova
TI  - Methods of investigation of queueing network with jumps of service rate
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 113
EP  - 126
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/
LA  - ru
ID  - SJVM_2002_5_2_a2
ER  - 
%0 Journal Article
%A V. G. Belyakov
%A N. A. Miroshnichenko
%A E. V. Rubtsova
%T Methods of investigation of queueing network with jumps of service rate
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 113-126
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/
%G ru
%F SJVM_2002_5_2_a2
V. G. Belyakov; N. A. Miroshnichenko; E. V. Rubtsova. Methods of investigation of queueing network with jumps of service rate. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 113-126. http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/

[1] Belyakov V. G., Miroshnichenko N. A., “Metody teorii setei massovogo obsluzhivaniya v analize realisticheskikh modelei telekommunikatsionnykh sistem”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 3:2 (1999), 207–222 | Zbl

[2] Kurlenya M. V., Leontev A. V., Belyakov V. G. i dr., “Fundamentalnye i prikladnye zadachi geomekhanicheskogo monitoringa. Chast 1. Vvedenie v problemu i obschie voprosy”, FTPRPI, no. 2, 1996, 15–25

[3] Belyakov V. G., Miroshnichenko N. A., Rodionov A. S. i dr., “Ob issledovanii sistem i setei s bimodalnoi plotnostyu dlitelnosti obsluzhivaniya”, Trudy IVMiMG SO RAN. Seriya “Informatika”, 1998, no. 3, 28–30

[4] Uolrend Dzh., Vvedenie v teoriyu setei massovogo obsluzhivaniya, Mir, M., 1993 | MR

[5] Mani V., Aneja Y. P., Singh N., “Throughput analysis of a two station closed queueing network with blocking and server breakdown”, Int. J. Systems Sci., 21:4 (1990), 611–619 | DOI | MR

[6] Bambos N., Wasserman K., “On stationary tandem queueing network with job feedback”, Queueing Syst. Theory Appl., 15:1–4 (1994), 137–164 | DOI | MR | Zbl

[7] Boxma O. J., Kelly F. P., Konheim A. G., “The product-form for sojourn time distributions in cyclic exponential queues”, JACM, 31:4 (1984), 128–133 | DOI | MR | Zbl

[8] Bacelli F., Massey W. A., Wright P. E., “Determining the exit time distribution for a closed cyclic network”, Theor. Comput. Sci., 125:1 (1994), 149–165 | DOI | MR

[9] Kofman A., Vvedenie v prikladnuyu kombinatoriku, Nauka, M., 1975 | MR

[10] Dech G., Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i $Z$-preobrazovaniya, Nauka, M., 1971 | MR

[11] Harrison F. G., “Transient behaviour of queueing networks”, J. Appl. Prob., 18 (1981), 482–490 | DOI | MR | Zbl