Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2002_5_2_a2, author = {V. G. Belyakov and N. A. Miroshnichenko and E. V. Rubtsova}, title = {Methods of investigation of queueing network with jumps of service rate}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {113--126}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/} }
TY - JOUR AU - V. G. Belyakov AU - N. A. Miroshnichenko AU - E. V. Rubtsova TI - Methods of investigation of queueing network with jumps of service rate JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2002 SP - 113 EP - 126 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/ LA - ru ID - SJVM_2002_5_2_a2 ER -
%0 Journal Article %A V. G. Belyakov %A N. A. Miroshnichenko %A E. V. Rubtsova %T Methods of investigation of queueing network with jumps of service rate %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2002 %P 113-126 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/ %G ru %F SJVM_2002_5_2_a2
V. G. Belyakov; N. A. Miroshnichenko; E. V. Rubtsova. Methods of investigation of queueing network with jumps of service rate. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 113-126. http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a2/
[1] Belyakov V. G., Miroshnichenko N. A., “Metody teorii setei massovogo obsluzhivaniya v analize realisticheskikh modelei telekommunikatsionnykh sistem”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 3:2 (1999), 207–222 | Zbl
[2] Kurlenya M. V., Leontev A. V., Belyakov V. G. i dr., “Fundamentalnye i prikladnye zadachi geomekhanicheskogo monitoringa. Chast 1. Vvedenie v problemu i obschie voprosy”, FTPRPI, no. 2, 1996, 15–25
[3] Belyakov V. G., Miroshnichenko N. A., Rodionov A. S. i dr., “Ob issledovanii sistem i setei s bimodalnoi plotnostyu dlitelnosti obsluzhivaniya”, Trudy IVMiMG SO RAN. Seriya “Informatika”, 1998, no. 3, 28–30
[4] Uolrend Dzh., Vvedenie v teoriyu setei massovogo obsluzhivaniya, Mir, M., 1993 | MR
[5] Mani V., Aneja Y. P., Singh N., “Throughput analysis of a two station closed queueing network with blocking and server breakdown”, Int. J. Systems Sci., 21:4 (1990), 611–619 | DOI | MR
[6] Bambos N., Wasserman K., “On stationary tandem queueing network with job feedback”, Queueing Syst. Theory Appl., 15:1–4 (1994), 137–164 | DOI | MR | Zbl
[7] Boxma O. J., Kelly F. P., Konheim A. G., “The product-form for sojourn time distributions in cyclic exponential queues”, JACM, 31:4 (1984), 128–133 | DOI | MR | Zbl
[8] Bacelli F., Massey W. A., Wright P. E., “Determining the exit time distribution for a closed cyclic network”, Theor. Comput. Sci., 125:1 (1994), 149–165 | DOI | MR
[9] Kofman A., Vvedenie v prikladnuyu kombinatoriku, Nauka, M., 1975 | MR
[10] Dech G., Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i $Z$-preobrazovaniya, Nauka, M., 1971 | MR
[11] Harrison F. G., “Transient behaviour of queueing networks”, J. Appl. Prob., 18 (1981), 482–490 | DOI | MR | Zbl