Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2002_5_1_a5, author = {J. H. He}, title = {Approximate analytical solution for certain strongly nonlinear oscillations by the variational iteration method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {57--69}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a5/} }
TY - JOUR AU - J. H. He TI - Approximate analytical solution for certain strongly nonlinear oscillations by the variational iteration method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2002 SP - 57 EP - 69 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a5/ LA - en ID - SJVM_2002_5_1_a5 ER -
%0 Journal Article %A J. H. He %T Approximate analytical solution for certain strongly nonlinear oscillations by the variational iteration method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2002 %P 57-69 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a5/ %G en %F SJVM_2002_5_1_a5
J. H. He. Approximate analytical solution for certain strongly nonlinear oscillations by the variational iteration method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a5/
[1] Lee W. K. et al., “Validity of the multiple-scale solution for a subharmonic resonance response of a bar with a nonlinear boundary condition”, J. Sound Vib., 208:4 (1997), 567–547 | DOI
[2] Delamotte B., “Nonperturbative method for solving differential equations and finding limit cycles”, Phys. Rev. Lett., 70 (1993), 3361–3364 | DOI | MR | Zbl
[3] Agrwal V. P., Denman H., “Weighted linearization technique for period approximation in large amplitude nonlinear oscillations”, J. Sound Vib., 57 (1985), 463–473 | DOI
[4] Liao S. J., “A second-order approximate analytical solution of a simple pendulum by the process analysis method”, ASME J. Appl. Mech., 59 (1992), 970–975 | Zbl
[5] Cheung Y. K., Chen S. H., Lau S. L., “A modified Lindstedt-Poincare method for certain strongly nonlinear oscillators”, Int. J. Nonlinear Mech., 26:3–4 (1991), 367–378 | DOI | MR | Zbl
[6] He J. H., “A coupling method of homotopy technique and perturbation technique for nonlinear problems”, Int. J. Nonlinear Mech., 35 (2000), 37–43 | DOI | MR | Zbl
[7] He J. H., “Analytical solution of a nonlinear oscillator by linearized perturbation technique”, Communications in Nonlinear Sciences and Numerical Simulation, 4:2 (1999), 109–113 | DOI | MR
[8] He J. H., “Some new approach to Duffing equation with strongly and high order nonlinearity (II) parametrized perturbation technique”, Communications in Nonlinear Sciences and Numerical Simulation, 4:1 (1999), 81–82 | DOI | MR
[9] He J. H., “Variational iteration method: a kind of nonlinear analytical technique: some examples”, Int. J. Nonlinear Mech., 34:4 (1999), 699–708 | DOI | Zbl
[10] He J. H., “Approximate analytical solution for seepage flow with fractional derivatives in porous media”, Computer Methods in Applied Mech. and Engineering, 167 (1998), 57–68 | DOI | MR | Zbl
[11] He J. H., “Approximate solution for nonlinear differential equations with convolution product nonlinearities”, Computer Methods in Applied Mech. and Engineering, 167 (1998), 69–73 | DOI | Zbl
[12] He J. H., Nonlinear oscillation with fractional derivative and its applications, International Conf. on Vibration Engineering'98, Dalian, China, 1998, 288–291
[13] Inokuti M., Sekine H., Mura T., “General use of the Lagrange multiplier in nonlinear mathematical physics”, Variational method in the mechanics of solids, ed. S. Nemat-Nasser, Pergamon Press, 1978, 156–162
[14] He J. H., Generalized Variational Principles in Fluids, University Press, Shanghai, 1999 (in Chinese)
[15] Finlayson B. A., The Method of Weighted Residual and Variational Principles, Acad. Press, 1972 | Zbl
[16] Adomian G. A., “Review of the decomposition method in applied mathematics”, J. Math. Anal. Appl., 135 (1988), 501–544 | DOI | MR | Zbl
[17] Cherruanlt Y., “Convergence of Adomian's method”, Kybernets, 18:2 (1989), 31–38 | DOI
[18] Smith D. R., Singular-Perturbation Theory: An Introduction with Applications, University Press, Cambridge, 1985 | MR
[19] Hagedorn P., Nonlinear Oscillations, Translated by Wolfram Stadler, Clarendon Press, Oxford, 1981 | MR
[20] Bellman R., Perturbation techniques in mathematics, physics, and engineering, Holt, Rinehart and Winston, Inc., New York, 1964 | MR
[21] Nayfeh A. H., Problems in Perturbation, John Wiley Sons, 1985 | MR | Zbl
[22] Acton J. R., Squire P. T., Solving Equations with Physical Understanding, Adam Hilger Ltd., Bristol and Boston, 1985