An effective algorithm for the simulation of ID finite probability densities by using the two-side rejection method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 373-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective general algorithm for the simulation of one-dimensional probability densities defined on a finite interval is presented. The two-side rejection algorithm has been constructed. It uses piecewise linear interval approximations of structurally simple functions. The algorithm has been investigated in detail for the beta-distribution with non-negative parameters. A modification of the algorithm for infinite densities and infinite intervals is proposed.
@article{SJVM_2001_4_4_a6,
     author = {{\CYRO}. A. Makhotkin},
     title = {An effective algorithm for the simulation of {ID} finite probability densities by using the two-side rejection method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {373--388},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a6/}
}
TY  - JOUR
AU  - О. A. Makhotkin
TI  - An effective algorithm for the simulation of ID finite probability densities by using the two-side rejection method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 373
EP  - 388
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a6/
LA  - ru
ID  - SJVM_2001_4_4_a6
ER  - 
%0 Journal Article
%A О. A. Makhotkin
%T An effective algorithm for the simulation of ID finite probability densities by using the two-side rejection method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 373-388
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a6/
%G ru
%F SJVM_2001_4_4_a6
О. A. Makhotkin. An effective algorithm for the simulation of ID finite probability densities by using the two-side rejection method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 373-388. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a6/

[1] Von Neumann J., “Various techniques used in connection with random digits”, National Bureau of Standards Mathematics Series, 12 (1951), 36–38

[2] Mikhailov G. A., Nekotorye voprosy teorii metodov Monte-Karlo, Nauka, Novosibirsk, 1974 | MR

[3] Devroy L., Non-Uniform Random Variate Generation, Springer-Verlag, 1986

[4] Knut D. E., Iskusstvo programmirovaniya dlya EVM, v. 3, Sortirovka i poisk, Mir, M., 1973 | MR

[5] Chen H. C., Asau V., “On generating random variates from an empirical distribution”, AIIE Transactions, 6 (1974), 163–166

[6] Makhotkin O. A., “Kvantilnyi metod generirovaniya diskretnykh sluchainykh velichin”, Teoriya i prilozheniya statisticheskogo modelirovaniya, ed. Mikhailov G. A., VTs SO AN, Novosibirsk, 1989, 33–42 | MR

[7] Voytishek A. V., “Rejection methods for modelling of beta-distribution”, Monte Carlo Methods and Applications, 4:1 (1998), 73–85 | DOI | MR | Zbl

[8] Korolyuk B. C., Portenko N. I., Skorokhod A. V., Turbin A. V., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985 | MR | Zbl

[9] Box G. E. P., Muller M. E., “A note on the generation of random normal deviates”, Ann. Math. Stat., 29 (1958), 610–611 | DOI | Zbl

[10] Fikhtengolts G. M., Kurs integralnogo i differentsialnogo ischisleniya, v. I, Fizmatgiz, M., 1962