Multigrid methods for interface problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 331-352

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze multigrid convergence when 2D-elliptic boundary value problems with interfaces are discretized using finite element methods where coarse meshes do not approximate the interface geometry. Starting with the initial mesh, the used interface adapted mesh generator constructs a finite element mesh up to a certain refinement level where the interface lines are approximated with a sufficient precision. It is shown that multigrid cycles based on SOR-smoothing and specific interpolation and restriction operators converge independently of the meshsize parameter. Moreover, in practice the convergence is also independent of the ratio of the jumping coefficients. We demonstrate the efficiency of our method by means of numerical examples.
@article{SJVM_2001_4_4_a3,
     author = {G. Globisch},
     title = {Multigrid methods for interface problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {331--352},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/}
}
TY  - JOUR
AU  - G. Globisch
TI  - Multigrid methods for interface problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 331
EP  - 352
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/
LA  - en
ID  - SJVM_2001_4_4_a3
ER  - 
%0 Journal Article
%A G. Globisch
%T Multigrid methods for interface problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 331-352
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/
%G en
%F SJVM_2001_4_4_a3
G. Globisch. Multigrid methods for interface problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 331-352. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/