Multigrid methods for interface problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 331-352
Voir la notice de l'article provenant de la source Math-Net.Ru
We analyze multigrid convergence when 2D-elliptic boundary value problems with interfaces are discretized
using finite element methods where coarse meshes do not approximate the interface geometry. Starting with
the initial mesh, the used interface adapted mesh generator constructs a finite element mesh up to a certain
refinement level where the interface lines are approximated with a sufficient precision. It is shown that multigrid
cycles based on SOR-smoothing and specific interpolation and restriction operators converge independently of
the meshsize parameter. Moreover, in practice the convergence is also independent of the ratio of the jumping
coefficients. We demonstrate the efficiency of our method by means of numerical examples.
@article{SJVM_2001_4_4_a3,
author = {G. Globisch},
title = {Multigrid methods for interface problems},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {331--352},
publisher = {mathdoc},
volume = {4},
number = {4},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/}
}
G. Globisch. Multigrid methods for interface problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 331-352. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/