Multigrid methods for interface problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 331-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze multigrid convergence when 2D-elliptic boundary value problems with interfaces are discretized using finite element methods where coarse meshes do not approximate the interface geometry. Starting with the initial mesh, the used interface adapted mesh generator constructs a finite element mesh up to a certain refinement level where the interface lines are approximated with a sufficient precision. It is shown that multigrid cycles based on SOR-smoothing and specific interpolation and restriction operators converge independently of the meshsize parameter. Moreover, in practice the convergence is also independent of the ratio of the jumping coefficients. We demonstrate the efficiency of our method by means of numerical examples.
@article{SJVM_2001_4_4_a3,
     author = {G. Globisch},
     title = {Multigrid methods for interface problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {331--352},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/}
}
TY  - JOUR
AU  - G. Globisch
TI  - Multigrid methods for interface problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 331
EP  - 352
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/
LA  - en
ID  - SJVM_2001_4_4_a3
ER  - 
%0 Journal Article
%A G. Globisch
%T Multigrid methods for interface problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 331-352
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/
%G en
%F SJVM_2001_4_4_a3
G. Globisch. Multigrid methods for interface problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 331-352. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/

[1] Adams R. A., Sobolev Spaces, Academic Press, Boston, 1990

[2] Bank R. E., Dupont T., “An optimal order process for solving elliptic finite element equations”, Math. Comput., 36 (1981), 35–51 | MR | Zbl

[3] Bramble J. H., Pasciak J. E., “New convergence estimates for multigrid algorithms”, Math. Comput., 49 (1987), 311–329 | MR | Zbl

[4] Bramble J. H., Pasciak J. E., “New estimates for multilevel algorithms including the V-cycle”, Math. Comput., 60 (1993), 449–471 | MR

[5] Bramble J. H., Pasciak J. E., “The analysis of smoothers for multigrid algorithms”, Math. Comput., 58 (1992), 467–488 | MR | Zbl

[6] Branca H. W., Meis T., “Fast solving boundary value problems”, ZAMM, 62 (1982) (in German) | MR | Zbl

[7] Brandt A., “Multilevel adaptive solution to boundary value problems”, Math. Comput., 31 (1977), 333–391 | MR

[8] Ciarlet P., The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978 | MR | Zbl

[9] Dobrowolski M., Numerical approximation of elliptic interface and corner problems, Habilitationsschrift der Hohen Mathematischen Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelm-Universität zu Bonn, Bonn, 1981

[10] Globisch G., Langer U., Proc. “Fourth Multigrid Seminar”, Report R-MATH-03/90, Weierstra-Institut für Angewandte Analysis und Stochastik, Berlin, 1990, 105–134 | MR

[11] Globisch G., Robust multigrid methods for elliptic boundary value problems in two-dimensional domains, Ph.D. thesis, Department of Mathematics, University of Technology Chemnitz, Chemnitz, 1993 (in German)

[12] Grizvard P., Elliptic problems in nonsmooth domains, Pitman, Boston, London, Melbourne, 1985

[13] Hackbusch W., Multigrid methods and applications, Springer Series in Computational Mathematics, 4, Springer Verlag, Berlin, 1985 | MR | Zbl

[14] Heise B., “Analysis of a fully discrete finite element method for a nonlinear magnetic field problem”, SIAM J. Numer. Anal., 31 (1994), 745–759 | DOI | MR | Zbl

[15] Jung M., Introduction to theory and application of multigrid methods, Wissenschaftliche Schriftenreihe der Technischen Universität Karl-Marx-Stadt, Karl-Marx-Stadt, 1989 (in German)

[16] Jung M., Proc. “GAMM-Seminar on Multigrid-Methods”, Report no 5, Weierstra-Institut fur Angewandte Analysis und Stochastik, Berlin, 1993

[17] Jung M., Langer U., Queck W., Meyer A., Schneider M., Proc. “Third Multigrid Seminar”, Report R-MATH-03/89, Weierstra-Institut für Angewandte Analysis und Stochastik, Berlin, 1989, 11–52 | MR | Zbl

[18] M. Jung and T. Steidten (eds.), The Multigrid-Package FEMGPM for solving elliptic and parabolic partial differential equations including problems with thermomechanic coupling. User's guide, University of Technology Chemnitz, Chemnitz, 1998 (in German)

[19] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, Heidelberg, 1995 | MR

[20] Kettler R., Meijerink J. A., A multigrid method and a combined multigrid-conjugate gradient method for elliptic problems with strongly discontinuous coefficients in general domains, Shell Publication 604, KSEPL, Rijswijk, 1981

[21] Korneev V. G., Iterative methods for finite element schemes of higher accuracy, Publishers of the St. Petersburg University, St. Petersburg, 1977

[22] Krizek M., “On semiregular families of triangulations and linear interpolation”, Appl. Math., 36 (1991), 223–232 | MR | Zbl

[23] Langer U., On the iteration parameters of the relaxation method on a sequence of grids, No 2638-79, VINITI, Moscow, 1979 (in Russian)

[24] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, v. I, Springer, Berlin, 1972

[25] Liu C., Liu Z., McCormick S. F., “An efficient multigrid scheme for elliptic equations with discontinuous coefficients”, Commun. Appl. Numer. Methods, 8 (1992), 621–631 | DOI | MR | Zbl

[26] McCormick S. F., Multigrid methods, SIAM, Philadelphia, PA, 1987 | MR | Zbl

[27] Neuss N., “V-cycle convergence with unsymmetric smoothers and applications to an anisotropic model problem”, SIAM J. Numer. Anal., 35 (1998), 1201–1212 | DOI | MR | Zbl

[28] Oganesyan L. A., Rukhovets L. A., Variational difference methods for solving elliptic equations, Scientific Publishers of the Armenian SSR, Yerevan, 1979 (in Russian) | MR

[29] Oganesyan L. A., Rivkind W. J., Rukhovets L. A., “Variational difference methods for solving elliptic equation II”, Differential Equations and Applications, Vilnius, 8 (1974), 107–175 (in Russian)

[30] Reusken A., “Steplength optimization and linear multigrid methods”, Numer. Math., 58 (1991), 819–838 | DOI | MR

[31] Wang J., “Convergence analysis without regularity assumptions for multigrid algorithms based on SOR smoothing”, SIAM J. Numer. Anal., 29 (1992), 987–1001 | DOI | MR | Zbl

[32] Wesseling P., An introduction to multigrid methods, John Wiley Sons, Chichester, 1992 | MR | Zbl

[33] Wohlgemuth R., Modelling and computing stationary magnetic field problems by modern numerical methods, Ph.D. thesis, University of Technology Karl-Marx-Stadt, Karl-Marx-Stadt, 1989 (in German)