Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2001_4_4_a3, author = {G. Globisch}, title = {Multigrid methods for interface problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {331--352}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/} }
G. Globisch. Multigrid methods for interface problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 331-352. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a3/
[1] Adams R. A., Sobolev Spaces, Academic Press, Boston, 1990
[2] Bank R. E., Dupont T., “An optimal order process for solving elliptic finite element equations”, Math. Comput., 36 (1981), 35–51 | MR | Zbl
[3] Bramble J. H., Pasciak J. E., “New convergence estimates for multigrid algorithms”, Math. Comput., 49 (1987), 311–329 | MR | Zbl
[4] Bramble J. H., Pasciak J. E., “New estimates for multilevel algorithms including the V-cycle”, Math. Comput., 60 (1993), 449–471 | MR
[5] Bramble J. H., Pasciak J. E., “The analysis of smoothers for multigrid algorithms”, Math. Comput., 58 (1992), 467–488 | MR | Zbl
[6] Branca H. W., Meis T., “Fast solving boundary value problems”, ZAMM, 62 (1982) (in German) | MR | Zbl
[7] Brandt A., “Multilevel adaptive solution to boundary value problems”, Math. Comput., 31 (1977), 333–391 | MR
[8] Ciarlet P., The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978 | MR | Zbl
[9] Dobrowolski M., Numerical approximation of elliptic interface and corner problems, Habilitationsschrift der Hohen Mathematischen Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelm-Universität zu Bonn, Bonn, 1981
[10] Globisch G., Langer U., Proc. “Fourth Multigrid Seminar”, Report R-MATH-03/90, Weierstra-Institut für Angewandte Analysis und Stochastik, Berlin, 1990, 105–134 | MR
[11] Globisch G., Robust multigrid methods for elliptic boundary value problems in two-dimensional domains, Ph.D. thesis, Department of Mathematics, University of Technology Chemnitz, Chemnitz, 1993 (in German)
[12] Grizvard P., Elliptic problems in nonsmooth domains, Pitman, Boston, London, Melbourne, 1985
[13] Hackbusch W., Multigrid methods and applications, Springer Series in Computational Mathematics, 4, Springer Verlag, Berlin, 1985 | MR | Zbl
[14] Heise B., “Analysis of a fully discrete finite element method for a nonlinear magnetic field problem”, SIAM J. Numer. Anal., 31 (1994), 745–759 | DOI | MR | Zbl
[15] Jung M., Introduction to theory and application of multigrid methods, Wissenschaftliche Schriftenreihe der Technischen Universität Karl-Marx-Stadt, Karl-Marx-Stadt, 1989 (in German)
[16] Jung M., Proc. “GAMM-Seminar on Multigrid-Methods”, Report no 5, Weierstra-Institut fur Angewandte Analysis und Stochastik, Berlin, 1993
[17] Jung M., Langer U., Queck W., Meyer A., Schneider M., Proc. “Third Multigrid Seminar”, Report R-MATH-03/89, Weierstra-Institut für Angewandte Analysis und Stochastik, Berlin, 1989, 11–52 | MR | Zbl
[18] M. Jung and T. Steidten (eds.), The Multigrid-Package FEMGPM for solving elliptic and parabolic partial differential equations including problems with thermomechanic coupling. User's guide, University of Technology Chemnitz, Chemnitz, 1998 (in German)
[19] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, Heidelberg, 1995 | MR
[20] Kettler R., Meijerink J. A., A multigrid method and a combined multigrid-conjugate gradient method for elliptic problems with strongly discontinuous coefficients in general domains, Shell Publication 604, KSEPL, Rijswijk, 1981
[21] Korneev V. G., Iterative methods for finite element schemes of higher accuracy, Publishers of the St. Petersburg University, St. Petersburg, 1977
[22] Krizek M., “On semiregular families of triangulations and linear interpolation”, Appl. Math., 36 (1991), 223–232 | MR | Zbl
[23] Langer U., On the iteration parameters of the relaxation method on a sequence of grids, No 2638-79, VINITI, Moscow, 1979 (in Russian)
[24] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, v. I, Springer, Berlin, 1972
[25] Liu C., Liu Z., McCormick S. F., “An efficient multigrid scheme for elliptic equations with discontinuous coefficients”, Commun. Appl. Numer. Methods, 8 (1992), 621–631 | DOI | MR | Zbl
[26] McCormick S. F., Multigrid methods, SIAM, Philadelphia, PA, 1987 | MR | Zbl
[27] Neuss N., “V-cycle convergence with unsymmetric smoothers and applications to an anisotropic model problem”, SIAM J. Numer. Anal., 35 (1998), 1201–1212 | DOI | MR | Zbl
[28] Oganesyan L. A., Rukhovets L. A., Variational difference methods for solving elliptic equations, Scientific Publishers of the Armenian SSR, Yerevan, 1979 (in Russian) | MR
[29] Oganesyan L. A., Rivkind W. J., Rukhovets L. A., “Variational difference methods for solving elliptic equation II”, Differential Equations and Applications, Vilnius, 8 (1974), 107–175 (in Russian)
[30] Reusken A., “Steplength optimization and linear multigrid methods”, Numer. Math., 58 (1991), 819–838 | DOI | MR
[31] Wang J., “Convergence analysis without regularity assumptions for multigrid algorithms based on SOR smoothing”, SIAM J. Numer. Anal., 29 (1992), 987–1001 | DOI | MR | Zbl
[32] Wesseling P., An introduction to multigrid methods, John Wiley Sons, Chichester, 1992 | MR | Zbl
[33] Wohlgemuth R., Modelling and computing stationary magnetic field problems by modern numerical methods, Ph.D. thesis, University of Technology Karl-Marx-Stadt, Karl-Marx-Stadt, 1989 (in German)