On the construction of a normal pseudo-solution for a~system of linear equations with a~rectangular matrix
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 285-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified $QR$ factorization algorithm is proposed. It allows us to construct a normal pseudo-solution of a System of Linear Algebraic Equations (SLAE) for a rectangular or square degenerate matrix with the same efficiency as for SLAE with a square nonsingular matrix. As an application, the construction of an analytic spline on a degenerate mesh is studied, and a modified algorithm is proposed to provide the “best” spline solution.
@article{SJVM_2001_4_3_a6,
     author = {A. I. Rozhenko},
     title = {On the construction of a normal pseudo-solution for a~system of linear equations with a~rectangular matrix},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a6/}
}
TY  - JOUR
AU  - A. I. Rozhenko
TI  - On the construction of a normal pseudo-solution for a~system of linear equations with a~rectangular matrix
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 285
EP  - 293
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a6/
LA  - ru
ID  - SJVM_2001_4_3_a6
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%T On the construction of a normal pseudo-solution for a~system of linear equations with a~rectangular matrix
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 285-293
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a6/
%G ru
%F SJVM_2001_4_3_a6
A. I. Rozhenko. On the construction of a normal pseudo-solution for a~system of linear equations with a~rectangular matrix. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 285-293. http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a6/

[1] Lawson C. I., Hanson R. J., Solving Least Squares Problem, Prentice Hall, Englewood Clibbs, 1974 | MR

[2] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[3] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999 (Per. s angl.)

[4] JSpline+: Spline Library for Java, http://www.excelsior-usa.com/jspline

[5] Rozhenko A. I., Abstraktnaya teoriya splainov: Ucheb. posobie, Izd. tsentr NGU, Novosibirsk, 1999

[6] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of Novosibirsk Computing Center, Num. Anal., 3, Special, NCC Publisher, Novosibirsk, 1993

[7] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[8] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka. Sib. otd-nie, Novosibirsk, 1983 | MR

[9] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka. Leningr. otd-nie, L., 1991 | MR | Zbl

[10] Uilkinson, Rainsh, Spravochnik algoritmov na yazyke ALGOL. Lineinaya algebra, Mashinostroenie, M., 1976 (Per. s angl.)

[11] Duchon J., “Spline minimizing rotation-invariant seminorms in Sobolev spaces”, Lect. Notes in Math., 571, 1977, 85–100 | MR | Zbl