Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2001_4_3_a0, author = {A. Yu. Bespalov and V. A. Rukavishnikov}, title = {The use of singular functions in the $h$-$p$ version of the finite element method for a {Dirichlet} problem with degeneration of the input data}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {201--228}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/} }
TY - JOUR AU - A. Yu. Bespalov AU - V. A. Rukavishnikov TI - The use of singular functions in the $h$-$p$ version of the finite element method for a Dirichlet problem with degeneration of the input data JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2001 SP - 201 EP - 228 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/ LA - en ID - SJVM_2001_4_3_a0 ER -
%0 Journal Article %A A. Yu. Bespalov %A V. A. Rukavishnikov %T The use of singular functions in the $h$-$p$ version of the finite element method for a Dirichlet problem with degeneration of the input data %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2001 %P 201-228 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/ %G en %F SJVM_2001_4_3_a0
A. Yu. Bespalov; V. A. Rukavishnikov. The use of singular functions in the $h$-$p$ version of the finite element method for a Dirichlet problem with degeneration of the input data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 201-228. http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/
[1] Babuška I., Dorr M. R., “Error estimates for the combined $h$ and $p$ versions of the finite element method”, Numer. Math., 37 (1981), 257–277 | DOI | MR | Zbl
[2] Babuška I., Guo B. Q., “The $h$-$p$ version of the finite element method for domains with curved boundaries”, SIAM J. Numer. Anal., 25 (1988), 837–861 | DOI | MR | Zbl
[3] Babuška I., Guo B. Q., “The $h$-$p$ version of the finite element method for problems with nonhomogeneous essential boundary conditions”, Comp. Meth. Appl. Mech. Engng., 74 (1989), 1–28 | DOI | MR | Zbl
[4] Babuška I., Kellogg R. B., Pitkäranta J., “Direct and inverse error estimates for finite elements with mesh refinement”, Numer. Math., 33 (1979), 447–471 | DOI | MR | Zbl
[5] Babuška I., Suri M., “The $p$ and $h$-$p$ versions of the finite element method, basic principles and properties”, SIAM Review, 36 (1994), 578–632 | DOI | MR | Zbl
[6] Bespalov A. Yu., Rukavishnikov V. A., On exponential estimates for the error of approximation of the finite element method on a radical mesh, Preprint Russ. Acad. of Sci. Far-Eastern Branch. Comp. Center, Khabarovsk, 1998 (in Russian) | MR
[7] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[8] Gui W., Babuška I., “The $h$, $p$ and $h$-$p$ versions of the finite element method in 1 dimension. Part 2: The error analysis of the $h$- and $h$-$p$ versions”, Numer. Math., 49 (1986), 613–657 | DOI | MR | Zbl
[9] Guo B. Q., “The $h$-$p$ version of the finite element method for solving boundary value problems in polyhedral domains”, Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993), Lecture Notes in Pure and Appl. Math., Dekker, New York, 1995, 101–120 | MR | Zbl
[10] Guo B., Babuška I., “The $h$-$p$ version of the finite element method. Part 1: The basic approximation results”, Comp. Mech., 1 (1986), 21–41 | DOI | Zbl
[11] Guo B., Babuška I., “The $h$-$p$ version of the finite element method. Part 2: General results and applications”, Comp. Mech., 1 (1986), 203–220 | DOI | Zbl
[12] Rukavishnikov V. A., On a $R_\nu$-generalized solution of a Dirichlet problem in a rectangle, Preprint USSR Acad. of Sci. Far-Eastern Branch. Comp. Center, Vladivostok, 1989 (in Russian) | Zbl
[13] Soviet Math., Dokl., 40:3 (1990) | MR | Zbl
[14] Rukavishnikov V. A., Bespalov A. Yu., “On the $h$-$p$ version of the finite element method for a one-dimensional boundary value problem with a singularity of the solution”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 1:2 (1998), 153–170 | MR | Zbl
[15] Rukavishnikov V. A., Rukavishnikova E. I., “On the convergence rate of the finite element method for a Dirichlet problem with coordinated degeneration of the input data”, Numerical Analysis Methods, Dalnauka, Vladivostok, 1993, 22–48 (in Russian)