The use of singular functions in the $h$-$p$ version of the finite element method for a Dirichlet problem with degeneration of the input data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 201-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a Dirichlet problem for a second-order non-self-adjoint elliptic equation with a strong singularity of the solution caused by a coordinated degeneration of input data at boundary points of a two-dimensional domain. The h-p version of the finite element method is used to approximate this problem. We introduce a finite element space with a singular basis that depends on the space to which the solution to the problem belongs. An exponential convergence rate in the norm of a weighted Sobolev space is proved.
@article{SJVM_2001_4_3_a0,
     author = {A. Yu. Bespalov and V. A. Rukavishnikov},
     title = {The use of singular functions in the $h$-$p$ version of the finite element method for a {Dirichlet} problem with degeneration of the input data},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--228},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/}
}
TY  - JOUR
AU  - A. Yu. Bespalov
AU  - V. A. Rukavishnikov
TI  - The use of singular functions in the $h$-$p$ version of the finite element method for a Dirichlet problem with degeneration of the input data
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 201
EP  - 228
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/
LA  - en
ID  - SJVM_2001_4_3_a0
ER  - 
%0 Journal Article
%A A. Yu. Bespalov
%A V. A. Rukavishnikov
%T The use of singular functions in the $h$-$p$ version of the finite element method for a Dirichlet problem with degeneration of the input data
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 201-228
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/
%G en
%F SJVM_2001_4_3_a0
A. Yu. Bespalov; V. A. Rukavishnikov. The use of singular functions in the $h$-$p$ version of the finite element method for a Dirichlet problem with degeneration of the input data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 201-228. http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a0/

[1] Babuška I., Dorr M. R., “Error estimates for the combined $h$ and $p$ versions of the finite element method”, Numer. Math., 37 (1981), 257–277 | DOI | MR | Zbl

[2] Babuška I., Guo B. Q., “The $h$-$p$ version of the finite element method for domains with curved boundaries”, SIAM J. Numer. Anal., 25 (1988), 837–861 | DOI | MR | Zbl

[3] Babuška I., Guo B. Q., “The $h$-$p$ version of the finite element method for problems with nonhomogeneous essential boundary conditions”, Comp. Meth. Appl. Mech. Engng., 74 (1989), 1–28 | DOI | MR | Zbl

[4] Babuška I., Kellogg R. B., Pitkäranta J., “Direct and inverse error estimates for finite elements with mesh refinement”, Numer. Math., 33 (1979), 447–471 | DOI | MR | Zbl

[5] Babuška I., Suri M., “The $p$ and $h$-$p$ versions of the finite element method, basic principles and properties”, SIAM Review, 36 (1994), 578–632 | DOI | MR | Zbl

[6] Bespalov A. Yu., Rukavishnikov V. A., On exponential estimates for the error of approximation of the finite element method on a radical mesh, Preprint Russ. Acad. of Sci. Far-Eastern Branch. Comp. Center, Khabarovsk, 1998 (in Russian) | MR

[7] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[8] Gui W., Babuška I., “The $h$, $p$ and $h$-$p$ versions of the finite element method in 1 dimension. Part 2: The error analysis of the $h$- and $h$-$p$ versions”, Numer. Math., 49 (1986), 613–657 | DOI | MR | Zbl

[9] Guo B. Q., “The $h$-$p$ version of the finite element method for solving boundary value problems in polyhedral domains”, Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993), Lecture Notes in Pure and Appl. Math., Dekker, New York, 1995, 101–120 | MR | Zbl

[10] Guo B., Babuška I., “The $h$-$p$ version of the finite element method. Part 1: The basic approximation results”, Comp. Mech., 1 (1986), 21–41 | DOI | Zbl

[11] Guo B., Babuška I., “The $h$-$p$ version of the finite element method. Part 2: General results and applications”, Comp. Mech., 1 (1986), 203–220 | DOI | Zbl

[12] Rukavishnikov V. A., On a $R_\nu$-generalized solution of a Dirichlet problem in a rectangle, Preprint USSR Acad. of Sci. Far-Eastern Branch. Comp. Center, Vladivostok, 1989 (in Russian) | Zbl

[13] Soviet Math., Dokl., 40:3 (1990) | MR | Zbl

[14] Rukavishnikov V. A., Bespalov A. Yu., “On the $h$-$p$ version of the finite element method for a one-dimensional boundary value problem with a singularity of the solution”, Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 1:2 (1998), 153–170 | MR | Zbl

[15] Rukavishnikov V. A., Rukavishnikova E. I., “On the convergence rate of the finite element method for a Dirichlet problem with coordinated degeneration of the input data”, Numerical Analysis Methods, Dalnauka, Vladivostok, 1993, 22–48 (in Russian)