The optimal quadratures for numerical solving of integral Volterra equations and the Cauchy problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 179-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations for optimal subgrid points and quadrature coefficients in the problems of numerical solution of integral Volterra equations and the Cauchy problem are obtained. The optimality is regarded as the minimum of the sum of squares of approximation errors in all subgrid points under condition that the last subgrid point is equal to the right end of the subgrid. The optimal points are numerically found for various numbers of subgrid points.
@article{SJVM_2001_4_2_a5,
     author = {A. O. Savchenko},
     title = {The optimal quadratures for numerical solving of integral {Volterra} equations and the {Cauchy} problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {179--184},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a5/}
}
TY  - JOUR
AU  - A. O. Savchenko
TI  - The optimal quadratures for numerical solving of integral Volterra equations and the Cauchy problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 179
EP  - 184
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a5/
LA  - ru
ID  - SJVM_2001_4_2_a5
ER  - 
%0 Journal Article
%A A. O. Savchenko
%T The optimal quadratures for numerical solving of integral Volterra equations and the Cauchy problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 179-184
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a5/
%G ru
%F SJVM_2001_4_2_a5
A. O. Savchenko. The optimal quadratures for numerical solving of integral Volterra equations and the Cauchy problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 179-184. http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a5/

[1] F. de Hoog, Weiss R., “Implicit Runge-Kutta methods for second kind Volterra integral equations”, Numer. Math., 23:3 (1975), 199–213 | DOI | MR | Zbl

[2] Savchenko A. O., “Numerical solution of Volterra integral equations of the second kind by implicit Runge–Kutta method”, Bulletin of Novosibirsk Computer Center, Series: Numer. Analysis, 7 (1996), 71–76

[3] Savchenko A. O., “Numerical solution of Volterra integral equations of the first kind by implicit Runge–Kutta method of high accuracy”, Bulletin of Novosibirsk Computer Center, Series: Numer. Analysis, 8 (1998), 81–96 | Zbl

[4] Savchenko A. O., “Reshenie integralnykh uravnenii Volterra I roda neyavnym metodom Runge–Kutty vysokogo poryadka”, Trudy konferentsii molodykh uchenykh VTs SO RAN (Novosibirsk, 1996), 109–126

[5] Burrage K., “High order algebraically stable Runge–Kutta methods”, BIT, 18 (1978), 373–383 | DOI | MR | Zbl

[6] Butcher J. C., The numerical analysis of ordinary differential equations. Runge–Kutta and general linear methods, Wiley, 1987 | MR | Zbl

[7] Yu. I. Kuznetsov, Algebraicheskie osnovy RK metoda chislennogo resheniya ODU, VTs SO RAN, Novosibirsk, 1995

[8] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl