An approximate solution of the Mosolov and the Miasnikov variational problem with the Coulomb boundary friction
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 163-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the construction and the proof of stability method for the solution of the Mosolov and the Miasnikov problem with boundary friction based on the combination of iterative prox-regularization method and the modified Newton method with step regulation.
@article{SJVM_2001_4_2_a4,
     author = {A. Ya. Zolotukhin and R. V. Namm and A. V. Pachina},
     title = {An approximate solution of the {Mosolov} and the {Miasnikov} variational problem with the {Coulomb} boundary friction},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {163--177},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a4/}
}
TY  - JOUR
AU  - A. Ya. Zolotukhin
AU  - R. V. Namm
AU  - A. V. Pachina
TI  - An approximate solution of the Mosolov and the Miasnikov variational problem with the Coulomb boundary friction
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 163
EP  - 177
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a4/
LA  - ru
ID  - SJVM_2001_4_2_a4
ER  - 
%0 Journal Article
%A A. Ya. Zolotukhin
%A R. V. Namm
%A A. V. Pachina
%T An approximate solution of the Mosolov and the Miasnikov variational problem with the Coulomb boundary friction
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 163-177
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a4/
%G ru
%F SJVM_2001_4_2_a4
A. Ya. Zolotukhin; R. V. Namm; A. V. Pachina. An approximate solution of the Mosolov and the Miasnikov variational problem with the Coulomb boundary friction. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a4/

[1] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl

[2] Fortin A., Cote D., “On the imposition of friction boundary conditions for the numerical simulation of Bingham fluid flows”, Computer Methods in Applied Mechanics and Engineering 88, North-Holland, 1991, 97–109

[3] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[4] Dyuvo G., Lions Zh. L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[5] Namm R. V., “O edinstvennosti resheniya v modelnoi zadache s treniem po zakonu Kulona”, Dinamika sploshnoi sredy, 109, 1994, 79–82 | MR | Zbl

[6] Schmitt H., “On the regularized Bingham problem”, Lecture Notes in Economics and Mathematical Systems, 452, Springer-Verlag, 1997, 298–315 | MR

[7] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[8] Marchuk G. I. Agoshkov Yu. M., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1975

[9] Namm R. V., “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, Springer-Verlag, 1997, 214–228 | MR | Zbl

[10] Minu M., Matematicheskoe programmirovanie, Nauka, M., 1990 | MR

[11] Glovinskii R., Lions Zh. L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[12] Vasilev F. P., Lektsii po metodam resheniya ekstremalnykh zadach, MGU, M., 1974