Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2001_4_1_a2, author = {Yu. A. Bogan}, title = {On {Fredholm} integral equations in two-dimensional anisotropic theory of elasticity}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {21--30}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/} }
TY - JOUR AU - Yu. A. Bogan TI - On Fredholm integral equations in two-dimensional anisotropic theory of elasticity JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2001 SP - 21 EP - 30 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/ LA - ru ID - SJVM_2001_4_1_a2 ER -
Yu. A. Bogan. On Fredholm integral equations in two-dimensional anisotropic theory of elasticity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/
[1] Mikhlin S. G., “Ploskaya deformatsiya v anizotropnoi srede”, Tr. Seism. in.-ta, 76, Izd. akad. nauk, M., 1936
[2] Sherman D. I., “K resheniyu ploskoi staticheskoi zadachi teorii uprugosti pri zadannykh vneshnikh silakh”, DAN SSSR, 28:1 (1940), 25–28
[3] Sherman D. I., “K resheniyu ploskoi staticheskoi zadachi teorii uprugosti pri zadannykh na granitse smescheniyakh”, DAN SSSR, 27:9 (1940), 911–913 | Zbl
[4] Sherman D. I., “K resheniyu ploskoi zadachi teorii uprugosti dlya anizotropnoi sredy”, Prikl. mat. mekh., 6:6 (1942), 509–514 | MR
[5] Lekhnitskii S. G., Anizotropnye plastinki, OGIZ, M., L., 1947 | MR
[6] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl
[7] Khatiashvili G. M., Zadachi Almanzi-Mitchella dlya odnorodnykh i sostavnykh tel, v. II, Metsnierba, Tbilisi, 1985 | Zbl