On Fredholm integral equations in two-dimensional anisotropic theory of elasticity
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 21-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, a simple trick is worked out which immediately leads on to the derivation of the Fredholm
integral equations in isotropic and anisotropic theory of elasticity for the first and the second boundary value
problems. This trick is based on the circumstance that the system of equations of anisotropic theory of elasticity
has simple complex characteristics. This circumstance is crucial, since it leads on to a simple system of linear
algebraic equations. This approach can be extended to arbitrary second order elliptic systems with constant
coefficients in the plane, when boundary operators contain only zero order or the first order derivatives. It is
specific that this approach does not require a knowledge of the fundamental solution.
@article{SJVM_2001_4_1_a2,
author = {Yu. A. Bogan},
title = {On {Fredholm} integral equations in two-dimensional anisotropic theory of elasticity},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {21--30},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/}
}
TY - JOUR AU - Yu. A. Bogan TI - On Fredholm integral equations in two-dimensional anisotropic theory of elasticity JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2001 SP - 21 EP - 30 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/ LA - ru ID - SJVM_2001_4_1_a2 ER -
Yu. A. Bogan. On Fredholm integral equations in two-dimensional anisotropic theory of elasticity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/