On Fredholm integral equations in two-dimensional anisotropic theory of elasticity
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a simple trick is worked out which immediately leads on to the derivation of the Fredholm integral equations in isotropic and anisotropic theory of elasticity for the first and the second boundary value problems. This trick is based on the circumstance that the system of equations of anisotropic theory of elasticity has simple complex characteristics. This circumstance is crucial, since it leads on to a simple system of linear algebraic equations. This approach can be extended to arbitrary second order elliptic systems with constant coefficients in the plane, when boundary operators contain only zero order or the first order derivatives. It is specific that this approach does not require a knowledge of the fundamental solution.
@article{SJVM_2001_4_1_a2,
     author = {Yu. A. Bogan},
     title = {On {Fredholm} integral equations in two-dimensional anisotropic theory of elasticity},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/}
}
TY  - JOUR
AU  - Yu. A. Bogan
TI  - On Fredholm integral equations in two-dimensional anisotropic theory of elasticity
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 21
EP  - 30
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/
LA  - ru
ID  - SJVM_2001_4_1_a2
ER  - 
%0 Journal Article
%A Yu. A. Bogan
%T On Fredholm integral equations in two-dimensional anisotropic theory of elasticity
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 21-30
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/
%G ru
%F SJVM_2001_4_1_a2
Yu. A. Bogan. On Fredholm integral equations in two-dimensional anisotropic theory of elasticity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a2/

[1] Mikhlin S. G., “Ploskaya deformatsiya v anizotropnoi srede”, Tr. Seism. in.-ta, 76, Izd. akad. nauk, M., 1936

[2] Sherman D. I., “K resheniyu ploskoi staticheskoi zadachi teorii uprugosti pri zadannykh vneshnikh silakh”, DAN SSSR, 28:1 (1940), 25–28

[3] Sherman D. I., “K resheniyu ploskoi staticheskoi zadachi teorii uprugosti pri zadannykh na granitse smescheniyakh”, DAN SSSR, 27:9 (1940), 911–913 | Zbl

[4] Sherman D. I., “K resheniyu ploskoi zadachi teorii uprugosti dlya anizotropnoi sredy”, Prikl. mat. mekh., 6:6 (1942), 509–514 | MR

[5] Lekhnitskii S. G., Anizotropnye plastinki, OGIZ, M., L., 1947 | MR

[6] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl

[7] Khatiashvili G. M., Zadachi Almanzi-Mitchella dlya odnorodnykh i sostavnykh tel, v. II, Metsnierba, Tbilisi, 1985 | Zbl