Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 357-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the conditional correctness of an operator-differential scheme is proved. Using this theorem, the Galerkin method for an abstract quasilinear hyperbolic equation is substantiated in the case when the coercive solvability conditions are absent and the existence of the sufficiently smooth exact solution is supposed. The unique solvability of the approximate problems is stated and the error estimate exact by the order of approximation is obtained. The use of these results is illustrated by an example of finite element schemes applied to the first initial boundary value problem for a second-order hyperbolic equation.
@article{SJVM_2000_3_4_a6,
     author = {A. D. Lyashko and S. E. Zhelezovsky},
     title = {Correctness of an operator-differential scheme and substantiation of the {Galerkin} method for hyperbolic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {357--368},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/}
}
TY  - JOUR
AU  - A. D. Lyashko
AU  - S. E. Zhelezovsky
TI  - Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 357
EP  - 368
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/
LA  - ru
ID  - SJVM_2000_3_4_a6
ER  - 
%0 Journal Article
%A A. D. Lyashko
%A S. E. Zhelezovsky
%T Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 357-368
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/
%G ru
%F SJVM_2000_3_4_a6
A. D. Lyashko; S. E. Zhelezovsky. Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 357-368. http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/

[1] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Talerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. uravneniya, 26:12 (1990), 2051–2059 | MR | Zbl

[2] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl

[3] Smagin V. V., “tsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matematika, 1996, no. 3, 50–57 | MR | Zbl

[4] Zhelezovskii S. E., “Metod Bubnova–Galerkina dlya abstraktnoi kvazilineinoi zadachi o statsionarnom deistvii”, Differents. uravneniya, 31:7 (1995), 1222–1231 | MR

[5] Zhelezovskii S. E., “O suschestvovanii i edinstvennosti resheniya i o skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi kvazilineinoi evolyutsionnoi zadachi v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1998, no. 10, 37–45 | MR

[6] Lyashko A. D., “O korrektnosti nelineinykh dvukhsloinykh operatorno-raznostnykh skhem”, Dokl. AN SSSR, 215:2 (1974), 263–265 | Zbl

[7] Lyashko A. D., Fedotov E. M., “O korrektnosti nelineinykh dvukhsloinykh operatorno-raznostnykh skhem”, Differents. uravneniya, 17:7 (1981), 1304–1316 | MR | Zbl

[8] Lyashko A. D., Fedotov E. M., “Issledovanie nelineinykh dvukhsloinykh operatorno-raznostnykh skhem s vesami”, Differents. uravneniya, 21:7 (1985), 1217–1227 | MR | Zbl

[9] Lyashko A. D., Fedotov E. M., “Korrektnost odnogo klassa konservativnykh nelineinykh operatorno-raznostnykh skhem”, Izv. vuzov. Matematika, 1985, no. 10, 47–55 | MR | Zbl

[10] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[11] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956

[12] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[14] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, 3-e izd., pererab. i dop., Nauka, M., 1988 | MR

[15] Kadlets Ya., “O regulyarnosti resheniya zadachi Puassona na oblasti s granitsei, lokalno podobnoi granitse vypukloi oblasti”, Chekhosl. matem. zhurn., 14:3 (1964), 386–393

[16] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[17] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[18] Geveci T., “On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms”, Math. Comput., 42:166 (1984), 393–415 | MR | Zbl

[19] Kok B., Geveci T., “The convergence of Galerkin approximation schemes for second-order hyperbolic equations with dissipation”, Math. Comput., 44:170 (1985), 379–390 | MR | Zbl