Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2000_3_4_a6, author = {A. D. Lyashko and S. E. Zhelezovsky}, title = {Correctness of an operator-differential scheme and substantiation of the {Galerkin} method for hyperbolic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {357--368}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/} }
TY - JOUR AU - A. D. Lyashko AU - S. E. Zhelezovsky TI - Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2000 SP - 357 EP - 368 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/ LA - ru ID - SJVM_2000_3_4_a6 ER -
%0 Journal Article %A A. D. Lyashko %A S. E. Zhelezovsky %T Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2000 %P 357-368 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/ %G ru %F SJVM_2000_3_4_a6
A. D. Lyashko; S. E. Zhelezovsky. Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 357-368. http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a6/
[1] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Talerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. uravneniya, 26:12 (1990), 2051–2059 | MR | Zbl
[2] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl
[3] Smagin V. V., “tsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matematika, 1996, no. 3, 50–57 | MR | Zbl
[4] Zhelezovskii S. E., “Metod Bubnova–Galerkina dlya abstraktnoi kvazilineinoi zadachi o statsionarnom deistvii”, Differents. uravneniya, 31:7 (1995), 1222–1231 | MR
[5] Zhelezovskii S. E., “O suschestvovanii i edinstvennosti resheniya i o skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi kvazilineinoi evolyutsionnoi zadachi v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1998, no. 10, 37–45 | MR
[6] Lyashko A. D., “O korrektnosti nelineinykh dvukhsloinykh operatorno-raznostnykh skhem”, Dokl. AN SSSR, 215:2 (1974), 263–265 | Zbl
[7] Lyashko A. D., Fedotov E. M., “O korrektnosti nelineinykh dvukhsloinykh operatorno-raznostnykh skhem”, Differents. uravneniya, 17:7 (1981), 1304–1316 | MR | Zbl
[8] Lyashko A. D., Fedotov E. M., “Issledovanie nelineinykh dvukhsloinykh operatorno-raznostnykh skhem s vesami”, Differents. uravneniya, 21:7 (1985), 1217–1227 | MR | Zbl
[9] Lyashko A. D., Fedotov E. M., “Korrektnost odnogo klassa konservativnykh nelineinykh operatorno-raznostnykh skhem”, Izv. vuzov. Matematika, 1985, no. 10, 47–55 | MR | Zbl
[10] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[11] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956
[12] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[14] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, 3-e izd., pererab. i dop., Nauka, M., 1988 | MR
[15] Kadlets Ya., “O regulyarnosti resheniya zadachi Puassona na oblasti s granitsei, lokalno podobnoi granitse vypukloi oblasti”, Chekhosl. matem. zhurn., 14:3 (1964), 386–393
[16] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[17] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[18] Geveci T., “On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms”, Math. Comput., 42:166 (1984), 393–415 | MR | Zbl
[19] Kok B., Geveci T., “The convergence of Galerkin approximation schemes for second-order hyperbolic equations with dissipation”, Math. Comput., 44:170 (1985), 379–390 | MR | Zbl