The recognition error probability bounds for quasi-periodic sequence formed from given number of identical subsequences
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 333-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

The upper and lower bounds of the recognition error probability of the quasi-periodic sequence formed from the given number of identical subsequences with unknowns (determined) instants of their beginning is obtained. The case is considered, when the unobservable quasi-periodic sequence is distorted by uncorrelated Gaussian interference with the known dispersion, and the instants of the beginning and ending of observations above the distorted sequence do not break first and last of a subsequence of hidden quasi-periodic sequence into two parts. The theoretical outcomes are illustrated by the data of numerical modeling.
@article{SJVM_2000_3_4_a4,
     author = {A. V. Kel'manov},
     title = {The recognition error probability bounds for quasi-periodic sequence formed from given number of identical subsequences},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {333--344},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a4/}
}
TY  - JOUR
AU  - A. V. Kel'manov
TI  - The recognition error probability bounds for quasi-periodic sequence formed from given number of identical subsequences
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 333
EP  - 344
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a4/
LA  - ru
ID  - SJVM_2000_3_4_a4
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%T The recognition error probability bounds for quasi-periodic sequence formed from given number of identical subsequences
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 333-344
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a4/
%G ru
%F SJVM_2000_3_4_a4
A. V. Kel'manov. The recognition error probability bounds for quasi-periodic sequence formed from given number of identical subsequences. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 333-344. http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a4/

[1] Kelmanov A. V., Khamidullin S. A., “Raspoznavanie kvaziperiodicheskoi posledovatelnosti, obrazovannoi iz zadannogo chisla odinakovykh podposledovatelnostei”, Sib. zhurn. industr. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 2:1 (1999), 53–74 | MR

[2] Kailath T., “The divergence and Bhattacharyya distance measures in signal selection”, IEEE Transactions on Communication Technology, 15:1 (1967, February), 52–60 | DOI

[3] Chernoff H. A., “Measure of asymptotic efficiency for tests of a hypothesis based on the sum observations”, The Annals of Mathematical Statistics, 23:4 (1952, December), 493–507 | DOI | MR | Zbl