Variational methods of data assimilation in the problem of stochastic modelling of complexes of hydrometeorological fields
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 281-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of dynamic probabilistic numerical modelling of ensembles of independent realizations of complexes of space-time fields of hydrometeorological elements based on the variational principle is proposed. An ensemble of realizations satisfies statistical climatic characteristics in the atmosphere, and each realization of this ensemble satisfies the hydrothermodynamic numerical model.
@article{SJVM_2000_3_3_a5,
     author = {V. A. Ogorodnikov and A. V. Protasov},
     title = {Variational methods of data assimilation in the problem of stochastic modelling of complexes of hydrometeorological fields},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {281--294},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a5/}
}
TY  - JOUR
AU  - V. A. Ogorodnikov
AU  - A. V. Protasov
TI  - Variational methods of data assimilation in the problem of stochastic modelling of complexes of hydrometeorological fields
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 281
EP  - 294
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a5/
LA  - en
ID  - SJVM_2000_3_3_a5
ER  - 
%0 Journal Article
%A V. A. Ogorodnikov
%A A. V. Protasov
%T Variational methods of data assimilation in the problem of stochastic modelling of complexes of hydrometeorological fields
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 281-294
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a5/
%G en
%F SJVM_2000_3_3_a5
V. A. Ogorodnikov; A. V. Protasov. Variational methods of data assimilation in the problem of stochastic modelling of complexes of hydrometeorological fields. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 281-294. http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a5/

[1] Buell C. E., “Variability of wind with distance and time on an isobaric surface”, J. of Applied Meteorology, 11:7 (1972), 1085–1091 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Buell C. E., “Adjustment of some atmospheric statistics to satisfy physical conditions”, J. of Applied Meteorology, 11:8 (1972), 1299–1304 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Gandin L. S., Kagan R. L., Statistical Methods of Interpreting Meteorological Data, Gidrometeoizdat, Leningrad, 1976 (in Russian) | Zbl

[4] Herman G., Modem Factor Analysis, Statistika, Moscow, 1972 (in Russian)

[5] Marchuk G. I., Penenko V. V., Aloyan A. E., Protasov A. V., “Structure of mathematical models in hydrodynamic environmental problems”, Modern Problems of Applied Mathematics and Mathematical Modelling, Nauka, Novosibirsk, 1982 (in Russian)

[6] Mikhailov G. A., Optimization of Monte Carlo Weight Methods, Springer-Verlag, Berlin, Heidelberg, 1992 | MR

[7] Ogorodnikov V. A., Protasov A. V., “Dynamic probabilistic model of atmospheric processes and variational methods of data assimilation”, Russ. J. Numer. Anal. Math. Model., 12:5 (1997), 461–479 | DOI | MR | Zbl

[8] Ogorodnikov V. A., Prigarin S. M., Numerical Modelling of Random Processes and Fields: Algorithms and Applications, VSP, Utrecht, The Netherlands, 1996 | MR | Zbl

[9] Poljak I. I., Multivariate climate statistical models, Gidrometeoizdat, Leningrad, 1989 (in Russian)

[10] Penenko V. V., Methods of Numerical Modelling of Atmospheric Processes, Gidrometeoizdat, Leningrad, 1981 (in Russian) | MR

[11] Rozhkov V. A., Trapeznikov Yu. A., Probability models of oceanological processes, Gidrometeoizdat, Leningrad, 1990 (in Russian)

[12] L. S. Gandin, V. I. Zakhariev, etc. (eds.), Statistical structure of meteorological fields, Budapest, 1976 (in Russian)