Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2000_3_3_a3, author = {I. V. Konnov}, title = {Properties of gap functions for mixed variational inequalities}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {259--270}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a3/} }
I. V. Konnov. Properties of gap functions for mixed variational inequalities. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 259-270. http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a3/
[1] Browder F. E., “On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces”, Proc. of the National Academy of Sciences of the USA, 56:2 (1966), 419–425 | DOI | MR | Zbl
[2] Duvaut G., Lions J.-L., Les Inéquations en Mechanique et Physique, Dunod, Paris, 1972 | MR | Zbl
[3] Baiocchi C., Capelo A., Variational and Quasi-variational Inequalities. Applications to Free Boundary Problems, John Wiley and Sons, New York, 1984 | MR | Zbl
[4] Patriksstm M., Nonlinear Programming and Variational Inequality Problems: A Unified Approach, Kluwer Academic Publishers, Dordrecht, 1999 | MR
[5] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR
[6] Opoitsev V. I., Nonlinear System Statics, Nauka, Moscow, 1986 | MR
[7] Polterovich V. M., Equilibrium and Economic Mechanism, Nauka, Moscow, 1990
[8] Lapin A., Iterative solution for two classes of mesh variational inequalities, Preprint, University of Oulu, Oulu, 1999
[9] More J. J., “Classes of functions and feasibility conditions in nonlinear complementarity problems”, Math. Progr., 6:3 (1974), 327–338 | DOI | MR | Zbl
[10] Kanzow C., Fukushima M., “Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities”, Math. Progr., 83:1 (1998), 55–87 | DOI | MR | Zbl
[11] Facchinei F., Kanzow C., “Beyond monotonicity in regularization methods for nonlinear complementarity problems”, SIAM J. Control and Optimiz., 37:4 (1999), 1150–1161 | DOI | MR | Zbl
[12] Peng J.-M., “Equivalence of variational inequality problems to unconstrained minimization”, Math. Progr., 78:3 (1997), 347–355 | DOI | MR | Zbl
[13] Yamashita N., Taji K., Fukushima M., “Unconstrained optimization formulations of variational inequality problems”, J. of Optimiz. Theory and Appl., 92:3 (1997), 439–456 | DOI | MR | Zbl
[14] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, 1970 | MR
[15] Dem'yanov V. F., Vasil'yev L. V., Non-differentiable Optimization, Nauka, Moscow, 1981
[16] Konnov I. V., Methods for Solving Finite-Dimensional Variational Inequalities, DAS, Kazan, 1998 | MR