Lumped mass error estimates for an isoparametric finite element eigenvalue problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 215-228
Voir la notice de l'article provenant de la source Math-Net.Ru
The error estimate for eigenfunctions and eigenvalues of the second order elliptic operator is analyzed
and justified for a class of curved isoparametric triangular finite elements. The quadrature formula giving the
lump of the mass matrix is considered. The use of the same nodes for an isoparametric triangle finite element
of more than one degree and a quadrature formula is the phenomenon investigated in the paper. At the end
of the paper, the numerical results are presented.
@article{SJVM_2000_3_3_a1,
author = {A. B. Andreev and T. D. Todorov},
title = {Lumped mass error estimates for an isoparametric finite element eigenvalue problem},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {215--228},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/}
}
TY - JOUR AU - A. B. Andreev AU - T. D. Todorov TI - Lumped mass error estimates for an isoparametric finite element eigenvalue problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2000 SP - 215 EP - 228 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/ LA - en ID - SJVM_2000_3_3_a1 ER -
%0 Journal Article %A A. B. Andreev %A T. D. Todorov %T Lumped mass error estimates for an isoparametric finite element eigenvalue problem %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2000 %P 215-228 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/ %G en %F SJVM_2000_3_3_a1
A. B. Andreev; T. D. Todorov. Lumped mass error estimates for an isoparametric finite element eigenvalue problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 215-228. http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/