Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2000_3_3_a1, author = {A. B. Andreev and T. D. Todorov}, title = {Lumped mass error estimates for an isoparametric finite element eigenvalue problem}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {215--228}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/} }
TY - JOUR AU - A. B. Andreev AU - T. D. Todorov TI - Lumped mass error estimates for an isoparametric finite element eigenvalue problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2000 SP - 215 EP - 228 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/ LA - en ID - SJVM_2000_3_3_a1 ER -
%0 Journal Article %A A. B. Andreev %A T. D. Todorov %T Lumped mass error estimates for an isoparametric finite element eigenvalue problem %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2000 %P 215-228 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/ %G en %F SJVM_2000_3_3_a1
A. B. Andreev; T. D. Todorov. Lumped mass error estimates for an isoparametric finite element eigenvalue problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 215-228. http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/
[1] Andreev A. B., Todorov T. D., “Lumped mass approximation for an isoparametric finite element eigenvalue problem”, Sibirian Journal of Numerical Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2:4 (1999), 295–308
[2] Babuška I., Osborn J., Eigenvalue Problems. Handbook of Num. Anal., v. II, North-Holland, Amsterdam, 1991 | MR | Zbl
[3] Brenner S. C., Scott L. R., The Mathematical Theory of Finite Element Methods, Texts in Appl. Math., Springer-Verlag, 1994 | MR
[4] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[5] Ciarlet P. G., Raviart P. A., “The combined effect of curved boundaries and numerical integration in isoparametric finite element method”, Math. Foundation of the FEM with Applications to PDE, ed. A. K. Aziz, Academic Press, New York, 1972, 409–474 | MR
[6] Fix G. J., “Effects of quadrature errors in finite element approximation of steady state, eigenvalue and parabolic problems”, Math. Foundation of the FEM with Applications to PDE, ed. A. K. Aziz, Academic Press, New York, 1972, 525–556 | MR
[7] Lebaud M. P., “Error estimate in an isoparametric finite element eigenvalue problem”, Math. of Comp., 63 (1994), 19–40 | MR | Zbl
[8] Pierce J. G., Varga R. S., “Higher order convergence results for the Rayleigh–Ritz method applied to eigenvalue problems”, SIAM J. Numer. Anal., 9 (1972), 137–151 | DOI | MR | Zbl
[9] Temam R., Navier–Stokes equations: Theory and Numerical Analysis, 3rd revised ed., North-Holland, Amsterdam, 1984 | MR