Lumped mass error estimates for an isoparametric finite element eigenvalue problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 215-228

Voir la notice de l'article provenant de la source Math-Net.Ru

The error estimate for eigenfunctions and eigenvalues of the second order elliptic operator is analyzed and justified for a class of curved isoparametric triangular finite elements. The quadrature formula giving the lump of the mass matrix is considered. The use of the same nodes for an isoparametric triangle finite element of more than one degree and a quadrature formula is the phenomenon investigated in the paper. At the end of the paper, the numerical results are presented.
@article{SJVM_2000_3_3_a1,
     author = {A. B. Andreev and T. D. Todorov},
     title = {Lumped mass error estimates for an isoparametric finite element eigenvalue problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {215--228},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/}
}
TY  - JOUR
AU  - A. B. Andreev
AU  - T. D. Todorov
TI  - Lumped mass error estimates for an isoparametric finite element eigenvalue problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 215
EP  - 228
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/
LA  - en
ID  - SJVM_2000_3_3_a1
ER  - 
%0 Journal Article
%A A. B. Andreev
%A T. D. Todorov
%T Lumped mass error estimates for an isoparametric finite element eigenvalue problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 215-228
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/
%G en
%F SJVM_2000_3_3_a1
A. B. Andreev; T. D. Todorov. Lumped mass error estimates for an isoparametric finite element eigenvalue problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 215-228. http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/