Lumped mass error estimates for an isoparametric finite element eigenvalue problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 215-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

The error estimate for eigenfunctions and eigenvalues of the second order elliptic operator is analyzed and justified for a class of curved isoparametric triangular finite elements. The quadrature formula giving the lump of the mass matrix is considered. The use of the same nodes for an isoparametric triangle finite element of more than one degree and a quadrature formula is the phenomenon investigated in the paper. At the end of the paper, the numerical results are presented.
@article{SJVM_2000_3_3_a1,
     author = {A. B. Andreev and T. D. Todorov},
     title = {Lumped mass error estimates for an isoparametric finite element eigenvalue problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {215--228},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/}
}
TY  - JOUR
AU  - A. B. Andreev
AU  - T. D. Todorov
TI  - Lumped mass error estimates for an isoparametric finite element eigenvalue problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 215
EP  - 228
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/
LA  - en
ID  - SJVM_2000_3_3_a1
ER  - 
%0 Journal Article
%A A. B. Andreev
%A T. D. Todorov
%T Lumped mass error estimates for an isoparametric finite element eigenvalue problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 215-228
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/
%G en
%F SJVM_2000_3_3_a1
A. B. Andreev; T. D. Todorov. Lumped mass error estimates for an isoparametric finite element eigenvalue problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 3, pp. 215-228. http://geodesic.mathdoc.fr/item/SJVM_2000_3_3_a1/

[1] Andreev A. B., Todorov T. D., “Lumped mass approximation for an isoparametric finite element eigenvalue problem”, Sibirian Journal of Numerical Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2:4 (1999), 295–308

[2] Babuška I., Osborn J., Eigenvalue Problems. Handbook of Num. Anal., v. II, North-Holland, Amsterdam, 1991 | MR | Zbl

[3] Brenner S. C., Scott L. R., The Mathematical Theory of Finite Element Methods, Texts in Appl. Math., Springer-Verlag, 1994 | MR

[4] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[5] Ciarlet P. G., Raviart P. A., “The combined effect of curved boundaries and numerical integration in isoparametric finite element method”, Math. Foundation of the FEM with Applications to PDE, ed. A. K. Aziz, Academic Press, New York, 1972, 409–474 | MR

[6] Fix G. J., “Effects of quadrature errors in finite element approximation of steady state, eigenvalue and parabolic problems”, Math. Foundation of the FEM with Applications to PDE, ed. A. K. Aziz, Academic Press, New York, 1972, 525–556 | MR

[7] Lebaud M. P., “Error estimate in an isoparametric finite element eigenvalue problem”, Math. of Comp., 63 (1994), 19–40 | MR | Zbl

[8] Pierce J. G., Varga R. S., “Higher order convergence results for the Rayleigh–Ritz method applied to eigenvalue problems”, SIAM J. Numer. Anal., 9 (1972), 137–151 | DOI | MR | Zbl

[9] Temam R., Navier–Stokes equations: Theory and Numerical Analysis, 3rd revised ed., North-Holland, Amsterdam, 1984 | MR