The second order approximation TVD scheme on moving adaptive grids for hyperbolic systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 109-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second order approximation finite difference scheme for moving adaptive grids which is the generalization of the well-known Harten scheme is presented. The conditions sufficient to ensure that the scheme is the TVD are obtained. The numerical tests of the scheme for the system of equation of shallow water when solutions contain shocks and rarefaction waves are conducted.
@article{SJVM_2000_3_2_a2,
     author = {V. B. Barakhnin and N. V. Borodkin},
     title = {The second order approximation {TVD} scheme on moving adaptive grids for hyperbolic systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a2/}
}
TY  - JOUR
AU  - V. B. Barakhnin
AU  - N. V. Borodkin
TI  - The second order approximation TVD scheme on moving adaptive grids for hyperbolic systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 109
EP  - 121
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a2/
LA  - ru
ID  - SJVM_2000_3_2_a2
ER  - 
%0 Journal Article
%A V. B. Barakhnin
%A N. V. Borodkin
%T The second order approximation TVD scheme on moving adaptive grids for hyperbolic systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 109-121
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a2/
%G ru
%F SJVM_2000_3_2_a2
V. B. Barakhnin; N. V. Borodkin. The second order approximation TVD scheme on moving adaptive grids for hyperbolic systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 109-121. http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a2/

[1] Gilmanov A. N., Kulachkova N. A., “Chislennoe issledovanie dvumernykh techenii gaza so skachkami metodom TVD na fizicheski adaptivnykh setkakh”, Mat. modelirovanie, 7:3 (1995), 97–107 | MR

[2] Barakhnin V. B., Karamyshev V. B., and Borodkin N. V., “TVD scheme on moving adaptive grid”, Russ. J. Numer. Anal. and Math. Model., 14:4 (1999) (to appear) | MR | Zbl

[3] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. of Computational Physics, 49:3 (1983), 357–393 | DOI | MR | Zbl

[4] Barakhnin V. B., “Konechno-raznostnye skhemy dlya chislennogo resheniya zadach teorii melkoi vody s ispolzovaniem adaptivnykh setok”, Vychislitelnye tekhnologii, 4:1 (1995), 38–50

[5] Barakhnin V. B., Khakimzyanov G. S., “On the application of adaptive grids to the numerical solution of one-dimensional problems in the shallow-water theory”, Russ. J. Numer. Anal. and Math. Model., 10:5 (1995), 373–391 | DOI | MR | Zbl

[6] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zhurnal vychisl. matem. i mat. fiziki, 37:10 (1997), 1201–1212 | MR | Zbl

[7] Casper J., Carpenter M. H., “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:3 (1998), 813–828 | DOI | MR | Zbl

[8] Lax P. D., Wendroff B., “Difference schemes for hyperbolic equations with high order of accuracy”, Commun. Pure Appl. Math., 17:3 (1964), 381–398 | DOI | MR | Zbl

[9] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR