Lumped mass approximation for an isoparametric finite element eigenvalue problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 295-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider isoparametric variant, of the lumped mass modification of the standard Calerkin method for second-order elliptic eigenvalue prohlem. The lumping of the mass matrix results from the use of an appropriate isoparametric quadrature formula for the integrals over triangular Lagrange finite elements. The analysis of the 7-node finite element transformations is made. The convergence of the eigenvalue approximations is proved.
@article{SJVM_1999_2_4_a0,
     author = {A. B. Andreev and T. D. Todorov},
     title = {Lumped mass approximation for an isoparametric finite element eigenvalue problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {295--308},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a0/}
}
TY  - JOUR
AU  - A. B. Andreev
AU  - T. D. Todorov
TI  - Lumped mass approximation for an isoparametric finite element eigenvalue problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 295
EP  - 308
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a0/
LA  - en
ID  - SJVM_1999_2_4_a0
ER  - 
%0 Journal Article
%A A. B. Andreev
%A T. D. Todorov
%T Lumped mass approximation for an isoparametric finite element eigenvalue problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 295-308
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a0/
%G en
%F SJVM_1999_2_4_a0
A. B. Andreev; T. D. Todorov. Lumped mass approximation for an isoparametric finite element eigenvalue problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 295-308. http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a0/

[1] Andreev A. B., Kascieva V. A., Vanmaele M., “Some results in lumped mass finite element approximation of eigenvalue problems using numerical quadrature formulas”, J. Comp. Appl. Math., 43 (1992), 291–311 | DOI | MR | Zbl

[2] Banerjee U., Osborn J. E., “Estimation of the effect of numerical integration in finite element eigenvalue approximation”, Numer. Math., 56 (1990), 735–762 | DOI | MR | Zbl

[3] Ciarlet P. G., The finite element method for elliptic problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[4] Courant R., Hilbert Methods of Mathematical Physics, v. II, Interscience, New York, 1962 | Zbl

[5] Crouzeix M., Raviart P. A., “Conforming and nonconforming finite element methods for solving the stationary Stokes equations, I”, RAIRO, Ser. Rouge Anal. Numer., R-3 (1973), 33–76 | MR

[6] Field D. A., “An algorithm for determining invertible quadratic isoparametric finite element transformations”, Math. of Comp., 37 (1981), 347–360 | MR | Zbl

[7] Fix G. J., “Effects of quadrature errors in finite element approximation of steady state, eigenvalue and parabolic problems”, Math. Foundation of the FEM with Applications to PDE, ed. A. K. Aziz, Academic Press, New York, 1972, 525–556 | MR

[8] Frey A. E., Hall C. A., Porsching T. A., “Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations”, Math. of Comp., 32 (1978), 725–749 | MR | Zbl

[9] Fulks W., Advanced Calculus, Weley, New York, 1961

[10] Lebaud M. P., “Error estimate in an isoparametric finite element eigenvalue problem”, Math. of Comp., 63 (1994), 19–40 | MR | Zbl

[11] Mitchell A. R., Wait R., The finite element method in partial differential equations, Weley, New York, 1977

[12] Tabata M., “$L^\infty$-analysis of the finite element method”, Lecture Notes in Numerical Analysis, 1, eds. H. Fujita and M. Yamaguti, 1979, 25–62 | MR | Zbl

[13] Temam R., Navier–Stokes equations: Theory and numerical analysis, 3rd revised ed., North-Holland, Amsterdam, 1984 | MR

[14] Todorov T. D., “Invertibihty of isoparametric finite element transformations associated with finite elements with two curved sides”, 5th international conference on differential equations and applications (CDE' V, Rousse, Bulgaria, 1995, August 24–29) | MR

[15] Tong P., Pian T. H. H., Bucciarelli L. L., “Mode shapes and frequencies by the finite element method using consistent and lumped masses”, J. Comp. Struct., 1 (1971), 623–638 | DOI | MR

[16] Ushijima T., “Error estimates for the lumped mass approximation of the heat equation”, Numer. Math., 6 (1979), 65–82 | MR | Zbl