Curvature-based multistep quasi-Newton method for unconstrained optimization
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 3, pp. 281-293

Voir la notice de l'article provenant de la source Math-Net.Ru

Multi-step methods derived in [1–3] have proven to be serious contenders in practice by outperforming traditional quasi-Newton methods based on the linear Secant Equation. Minimum curvature methods that aim at tuning the interpolation process in the construction of the new Hessian approximation of the multi-step type are among the most successful so far [3]. In this work, we develop new methods of this type that derive from a general framework based on a parameterized nonlinear model. One of the main concerns of this paper is to conduct practical investigation and experimentation of the newly developed methods and we use the methods in [1–7] as a benchmark for the comparison. The results of the numerical experiments made indicate that these methods substantially improve the performance of quasi-Newton methods.
@article{SJVM_1999_2_3_a6,
     author = {I. A. R. Moghrabi and Samir A. Obeid},
     title = {Curvature-based multistep {quasi-Newton} method for unconstrained optimization},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {281--293},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/}
}
TY  - JOUR
AU  - I. A. R. Moghrabi
AU  - Samir A. Obeid
TI  - Curvature-based multistep quasi-Newton method for unconstrained optimization
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 281
EP  - 293
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/
LA  - en
ID  - SJVM_1999_2_3_a6
ER  - 
%0 Journal Article
%A I. A. R. Moghrabi
%A Samir A. Obeid
%T Curvature-based multistep quasi-Newton method for unconstrained optimization
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 281-293
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/
%G en
%F SJVM_1999_2_3_a6
I. A. R. Moghrabi; Samir A. Obeid. Curvature-based multistep quasi-Newton method for unconstrained optimization. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 3, pp. 281-293. http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/