Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1999_2_3_a6, author = {I. A. R. Moghrabi and Samir A. Obeid}, title = {Curvature-based multistep {quasi-Newton} method for unconstrained optimization}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {281--293}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/} }
TY - JOUR AU - I. A. R. Moghrabi AU - Samir A. Obeid TI - Curvature-based multistep quasi-Newton method for unconstrained optimization JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1999 SP - 281 EP - 293 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/ LA - en ID - SJVM_1999_2_3_a6 ER -
%0 Journal Article %A I. A. R. Moghrabi %A Samir A. Obeid %T Curvature-based multistep quasi-Newton method for unconstrained optimization %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 1999 %P 281-293 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/ %G en %F SJVM_1999_2_3_a6
I. A. R. Moghrabi; Samir A. Obeid. Curvature-based multistep quasi-Newton method for unconstrained optimization. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 3, pp. 281-293. http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a6/
[1] Moghrabi I. A. R., Obeid S. Y., “A new family of multi-step quasi-Newton methods”, 6-th Int. Coll. on Differential Equations, ed. Bainov D., VSP, 1998, 319–326 | MR | Zbl
[2] Ford J. A., Moghrabi I. A., “Minimum curvature quasi-Newton methods”, Computers Math. Applic., 31 (1996), 179–186 | DOI | MR | Zbl
[3] Ford J. A., Moghrabi L. A., Function-value multi-step quasi-Newton methods, Technical Report; CSM-270, Department of Computer Science, University of Essex, 1996
[4] Ford J. A., Moghrabi L. A., On the use function value in multi-step methods, Technical Report; CSM-271, Department of Computer Science, University of Essex, 1996 | Zbl
[5] Ford J. A., Moghrabi L. A., “Further investigation of multi-step quasi-Newton methods”, Scientia Iranica, 1 (1995), 327–334 | MR | Zbl
[6] Ford J. A., Moghrabi L. A., “Multi-step quasi-Newton methods for optimization”, J. Comput. Appl. Math., 50 (1994), 305–323 | DOI | MR | Zbl
[7] Ford J. A., Moghrabi L. A., “Alternative parameter choices for multi-step quasi-Newton methods”, Optim. Meth. Software, 2 (1993), 357–370 | DOI
[8] Gill P., Murray W., Wright M., Numerical Linear Algebra on Optimization, v. I, Addison-Wesley, U.S.A, 1991
[9] Fletcher R. F., Pratical Methods of Optimization, John Wiley, Great Britain, 1991 | MR
[10] Ford J. A., Saadallah A. F., “Efficient utilization of function-values in unconstrained minimization”, Colloq. Math. Soc. Jan. Bolyai, 50 (1986), 539–563
[11] Dennis J. E., Schnabel R. B., “Minimum change variable metric update formulae”, SIAM Review, 21 (1979), 443–459 | DOI | MR | Zbl
[12] Broyden C. G., “The convergence of a class of double-rank minimization algorithms”, J. Inst. Math. Applic., 6 (1970), 76–90 ; 222–231 | DOI | MR | Zbl | Zbl
[13] Fletcher R., “A new approach to variable metric algorithms”, Comput. J., 13 (1970), 317–322 | DOI | Zbl
[14] Goldfarb D., “A family of variable metric methods derived by variational means”, Maths. Comp., 24 (1970), 23–26 | MR
[15] Shanno D. F., “Conditioning of quasi-Newton methods for function minimization”, Maths. Comp., 24 (1970), 647–656 | MR