Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 3, pp. 257-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of numerical piece-uniform regularization of two-dimensional ill-posed problems with bounded discontinuous solutions are under consideration. The functions of two variables with bounded variations of several kinds (total variation, variation of Arzela) are applied to solve the problem by use of regularizing algorithms. In finite-dimensional form, these algorithms are reduced to solution of mathematical programming mith non-smooth target functions or with non-smooth restrictions. After smooth approximation, the algorithms are effectively implemented numerically and ensure piece-uniform convergence of approximate solutions to exact solution to be found. The numerical experiments in problems of distored image reconstruction illustrate the influence of different kinds of variations on the quality of obtained solution.
@article{SJVM_1999_2_3_a4,
     author = {A. S. Leonov},
     title = {Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {257--271},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a4/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 257
EP  - 271
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a4/
LA  - ru
ID  - SJVM_1999_2_3_a4
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 257-271
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a4/
%G ru
%F SJVM_1999_2_3_a4
A. S. Leonov. Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 3, pp. 257-271. http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a4/

[1] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya nekorrektnykh zadach s razryvnymi resheniyami”, Zhurn. vychisl. matem. i mat. fiz., 22:3 (1982), 516–531 | MR | Zbl

[2] Leonov A. S., “O chislennoi realizatsii algoritmov kusochno-ravnomernoi regulyarizatsii”, Zhurn. vychisl. matem. i mat. fiz., 27:9 (1987), 1412–1416 | MR

[3] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[4] Goncharskii A. V., Yagola A. G., “O ravnomernom priblizhenii monotonnogo resheniya nekorrektnykh zadach”, Dokl. AN SSSR, 184:4 (1969), 771–773

[5] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Regulyarizuyuschie algoritmy i apriornaya informatsiya, Nauka, M., 1983 | MR

[6] Leonov A. S., “Funktsii neskolkikh peremennykh s ogranichennoi variatsiei v nekorrektnykh zadachakh”, Zhurn. vychisl. matem. i mat. fiz., 36:9 (1996), 35–49 | MR | Zbl

[7] Leonov A. S., “Ob ispolzovanii funktsii neskolkikh peremennykh s ogranichennoi variatsiei dlya kusochno-raznomernoi regulyarizatsii nekorrektnykh zadach”, Dokl. RAN, 351:5 (1996), 592–595 | MR | Zbl

[8] Leonov A. S., “O mnogomernykh nekorrektnykh zadachakh s razryvnymi resheniyami”, Sib. mat. zhurn., 39:1 (1998), 74–86 | MR | Zbl

[9] Leonov A. S., “Applications of functions of several variables with limited variations for piecewise uniform regularization of ill-posed problems”, J. of Inverse and Ill-posed Problems, 6:1 (1998), 67–91 | DOI | MR

[10] Clarkson J. A., Adams C. R., “On definition of bounded variation for functions of two variables”, Trans. Amer. Math. Soc., 35:4 (1933), 824–854 | MR

[11] Vitushkin A. G., O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955

[12] Guisti E., Minimal surfaces and functions of bounded variation, Birkhäuser, Boston, Basel, Stuttgart, 1984 | MR

[13] Acar R., Vogel C., “Analysis of BV Penalty Methods for Ill-Posed Problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl

[14] Leonov A. S., “O nekotorykh algoritmakh resheniya nekorrektnykh ekstremalnykh zadach”, Matem. sborn., 129(171):2 (1986), 218–231 | MR | Zbl

[15] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[16] Morozov V. A., Metody regulyarizatsii neustoichivykh zadach, Izd-vo Mosk. Un-ta, M., 1987 | MR

[17] Leonov A. S., “Zamechaniya o polnoi variatsii funktsii neskolkikh peremennykh i mnogomernom analoge printsipa vybora Khelli”, Matem. zametki, 63:1 (1998), 69–80 | MR | Zbl

[18] Tikhonov A. N., Vasilev F. P., “Metody resheniya nekorrektnykh ekstremalnykh zadach”, Math. Models and Numer. Methods. Banach Center Publ., 3 (1978), 297–342 | MR | Zbl

[19] Vogel C., Hanke M., Two-lewel preconditioners for regularized inverse problems II: Implementation and numerical results, Preprint, 1998 Internet: http://www.math.montana.edu/~vogel/Papers/Papers.html | MR

[20] Neubauer A., Scherzer O., “Regularization for curve representation: uniform convergence for discontinuous solutions of ill-posed problems”, SIAM J. Appl. Math., 58 (1998), 1891–1900 | DOI | MR | Zbl