Slope's choice in plane curve interpolation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 3, pp. 197-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of plane curve construction, given by supporting points, is considered. The methods, based on the piece-wise Hermit interpolation by the polynomials of third degree (like the Fergusson and Bezier approaches), additionally require slope vectors in supporting points. Here two methods for slopes are suggested. In some sense they present extremal interpolation variants. Their convex combinations give multiparameter set of interpolating curves. There we select one-parameter set, whose parameter influences to the same extent on visual smoothness and curvature on all curve patches. On the base of numerical experiments the parameter limits have been found out and which provide the simplicity and sufficient smoothness of the interactively managed curve with the help of supporting points.
@article{SJVM_1999_2_3_a0,
     author = {A. Yu. Bezhaev},
     title = {Slope's choice in plane curve interpolation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {197--205},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a0/}
}
TY  - JOUR
AU  - A. Yu. Bezhaev
TI  - Slope's choice in plane curve interpolation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 197
EP  - 205
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a0/
LA  - ru
ID  - SJVM_1999_2_3_a0
ER  - 
%0 Journal Article
%A A. Yu. Bezhaev
%T Slope's choice in plane curve interpolation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 197-205
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a0/
%G ru
%F SJVM_1999_2_3_a0
A. Yu. Bezhaev. Slope's choice in plane curve interpolation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 3, pp. 197-205. http://geodesic.mathdoc.fr/item/SJVM_1999_2_3_a0/

[1] Foks A., Pratt M., Vychislitelnaya geometriya, Mir, M., 1982 | MR

[2] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of the Novosibirsk Computing Center, Num. Anal., 3, Special, NCC Publisher, Novosibirsk, 1993

[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[4] Zavyalov Yu. S., Leus V. A., Skorospelov V. A., Splainy v inzhenernoi geometrii, Mashinostroenie, M., 1985 | MR

[5] Skorospelov V. A., “Interpolyatsiya ploskikh krivykh”, Vychislitelnye sistemy, 68, Novosibirsk, 1976, 33–44 | MR | Zbl