Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1999_2_1_a4, author = {V. V. Ostapenko}, title = {Finite difference scheme of high order of convergence at a~nonstationary shock wave}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {47--56}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a4/} }
TY - JOUR AU - V. V. Ostapenko TI - Finite difference scheme of high order of convergence at a~nonstationary shock wave JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1999 SP - 47 EP - 56 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a4/ LA - ru ID - SJVM_1999_2_1_a4 ER -
V. V. Ostapenko. Finite difference scheme of high order of convergence at a~nonstationary shock wave. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a4/
[1] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl
[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[3] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1985 | MR
[4] Lax P., Wendroff B., “Systems of conservation laws”, Comm. Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[5] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[6] Kolgan V. P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zhurn. vychisl. matem. i mat. fiz., 18:5 (1978), 1340–1345 | MR | Zbl
[7] Van Leer B., “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136 | DOI | MR
[8] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[9] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl
[10] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[11] Ostapenko V. V., “Ob approksimatsii zakonov sokhraneniya raznostnymi skhemami skvoznogo scheta”, Zhurn. vychisl. matem. i mat. fiz., 30:9 (1990), 1405–1417 | MR
[12] Ostapenko V. V., O povyshenii poryadka slaboi approksimatsii zakonov sokhraneniya na razryvnykh resheniyakh, Zhurn. vychisl. matem. i mat. fiz., 36, no. 10, 1996 | MR | Zbl
[13] Ostapenko V. V., “Approksimatsiya uslovii Gyugonio yavnymi konservativnymi raznostnymi skhemami na nestatsionarnykh udarnykh volnakh”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 1:1 (1998), 77–88 | MR
[14] Rusanov V. V., Bezmenov I. V., Nazhestkina E. I., “Vychislenie pogreshnosti raznostnykh skhem dlya rascheta razryvnykh reshenii”, Chislennoe modelirovanie v aerogidrodinamike, Nauka, M., 1986, 174–187
[15] Ostapenko V. V., “Eksperimentalnoe izuchenie razlichiya mezhdu poryadkami approksimatsii i tochnosti”, Prilozhenie v kn.: Godunov S. K., Vospominanie o raznostnykh skhemakh, Nauchnaya kniga, Novosibirsk, 1997
[16] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zhurn. vychisl. matem. i mat. fiz., 37:10. (1997), 1201–1212 | MR | Zbl
[17] Casper J., Carpenter M. N., “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998) (to appear) | MR | Zbl
[18] Carpenter M. N., Casper J. H., “Computational considerations for the simulations of discontinues flows”, Barriers and challenges in computational fluid dynamics, ed. V. Venkatakrishnan, Kluwer academic publiching, 1997
[19] Carpenter M. N., Casper J. H., The accuracy of shock capturing in two spatial dimansions, AAIA-97-2107, 488–498
[20] Ivanov M. Ya., Kraiko A. N., “Ob approksimatsii razryvnykh reshenii pri ispolzovanii raznostnykh skhem skvoznogo scheta”, Zhurn. vychisl. matem. i mat. fiz., 18:3 (1978), 780–783
[21] Stoker Dzh. Dzh., Volny na vode, IL, Moskva, 1959
[22] Ovsyannikov L. V., Makarenko N. I., Nalimov V. I. i dr., Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985
[23] Hirsh R., “Higher order accurate difference solutions of a fluid mechanics problems by a compact differencing technique”, J. Comp. Phys., 19:1 (1975), 90–109 | DOI | MR | Zbl
[24] Ciment M., Leventhal S. H., Weinberg B. C., “The operator compact implicit method for parabolic equations”, J. Comp. Phys., 28:2 (1978), 135–166 | DOI | MR | Zbl
[25] Berger A. E., Solomon J. M., Ciment M. et al., “Generalized OCI schemes for boundary layer problems”, Math. Comp., 35:6 (1980), 695–731 | DOI | MR
[26] Belotserkovskii O. M., Byrkin A. D., Mazurov A. P., Tolstykh A. I., “Raznostnyi metod povyshennoi tochnosti dlya rascheta techenii vyazkogo gaza”, Zhurn. vychisl. matem. i mat. fiz., 22:6 (1982), 1480–1490 | MR | Zbl