Finite difference scheme of high order of convergence at a~nonstationary shock wave
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 47-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite difference scheme is constructed for the hyperbolic system of two conservation laws of the “shallow water” theory. It has not less than the second order of weak convergence when calculating the nonstationar shock wave. This scheme is not monotone, however, as differentiated from all other known now “high accuracy” schemes (considering monotone ones), it reproduces the Hugoniot conditions with high accuracy and correspondingly conserves the high order of the strong local convergence in the area of the non-stationary shock influence.
@article{SJVM_1999_2_1_a4,
     author = {V. V. Ostapenko},
     title = {Finite difference scheme of high order of convergence at a~nonstationary shock wave},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a4/}
}
TY  - JOUR
AU  - V. V. Ostapenko
TI  - Finite difference scheme of high order of convergence at a~nonstationary shock wave
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 47
EP  - 56
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a4/
LA  - ru
ID  - SJVM_1999_2_1_a4
ER  - 
%0 Journal Article
%A V. V. Ostapenko
%T Finite difference scheme of high order of convergence at a~nonstationary shock wave
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 47-56
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a4/
%G ru
%F SJVM_1999_2_1_a4
V. V. Ostapenko. Finite difference scheme of high order of convergence at a~nonstationary shock wave. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/SJVM_1999_2_1_a4/

[1] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[3] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1985 | MR

[4] Lax P., Wendroff B., “Systems of conservation laws”, Comm. Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[5] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[6] Kolgan V. P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zhurn. vychisl. matem. i mat. fiz., 18:5 (1978), 1340–1345 | MR | Zbl

[7] Van Leer B., “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136 | DOI | MR

[8] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[9] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl

[10] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[11] Ostapenko V. V., “Ob approksimatsii zakonov sokhraneniya raznostnymi skhemami skvoznogo scheta”, Zhurn. vychisl. matem. i mat. fiz., 30:9 (1990), 1405–1417 | MR

[12] Ostapenko V. V., O povyshenii poryadka slaboi approksimatsii zakonov sokhraneniya na razryvnykh resheniyakh, Zhurn. vychisl. matem. i mat. fiz., 36, no. 10, 1996 | MR | Zbl

[13] Ostapenko V. V., “Approksimatsiya uslovii Gyugonio yavnymi konservativnymi raznostnymi skhemami na nestatsionarnykh udarnykh volnakh”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 1:1 (1998), 77–88 | MR

[14] Rusanov V. V., Bezmenov I. V., Nazhestkina E. I., “Vychislenie pogreshnosti raznostnykh skhem dlya rascheta razryvnykh reshenii”, Chislennoe modelirovanie v aerogidrodinamike, Nauka, M., 1986, 174–187

[15] Ostapenko V. V., “Eksperimentalnoe izuchenie razlichiya mezhdu poryadkami approksimatsii i tochnosti”, Prilozhenie v kn.: Godunov S. K., Vospominanie o raznostnykh skhemakh, Nauchnaya kniga, Novosibirsk, 1997

[16] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zhurn. vychisl. matem. i mat. fiz., 37:10. (1997), 1201–1212 | MR | Zbl

[17] Casper J., Carpenter M. N., “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998) (to appear) | MR | Zbl

[18] Carpenter M. N., Casper J. H., “Computational considerations for the simulations of discontinues flows”, Barriers and challenges in computational fluid dynamics, ed. V. Venkatakrishnan, Kluwer academic publiching, 1997

[19] Carpenter M. N., Casper J. H., The accuracy of shock capturing in two spatial dimansions, AAIA-97-2107, 488–498

[20] Ivanov M. Ya., Kraiko A. N., “Ob approksimatsii razryvnykh reshenii pri ispolzovanii raznostnykh skhem skvoznogo scheta”, Zhurn. vychisl. matem. i mat. fiz., 18:3 (1978), 780–783

[21] Stoker Dzh. Dzh., Volny na vode, IL, Moskva, 1959

[22] Ovsyannikov L. V., Makarenko N. I., Nalimov V. I. i dr., Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985

[23] Hirsh R., “Higher order accurate difference solutions of a fluid mechanics problems by a compact differencing technique”, J. Comp. Phys., 19:1 (1975), 90–109 | DOI | MR | Zbl

[24] Ciment M., Leventhal S. H., Weinberg B. C., “The operator compact implicit method for parabolic equations”, J. Comp. Phys., 28:2 (1978), 135–166 | DOI | MR | Zbl

[25] Berger A. E., Solomon J. M., Ciment M. et al., “Generalized OCI schemes for boundary layer problems”, Math. Comp., 35:6 (1980), 695–731 | DOI | MR

[26] Belotserkovskii O. M., Byrkin A. D., Mazurov A. P., Tolstykh A. I., “Raznostnyi metod povyshennoi tochnosti dlya rascheta techenii vyazkogo gaza”, Zhurn. vychisl. matem. i mat. fiz., 22:6 (1982), 1480–1490 | MR | Zbl