A~cascadic multigrid algorithm in the finite element method for the threedimensional Dirichlet problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 3, pp. 217-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

A standard scheme of the finite element method with the use of piecewise-linear elements on tetrahedrons is considered as applied to the three-dimensional elliptic second order Dirichlet problem. In order to solve this scheme, a cascadic arrangement of two iterative algorithms is used on a sequence of embedded threedimensional triangulations that gives a simple version of the multigrid methods without preconditioning and restriction to a coarser grid. The cascadic algorithm starts on the coarsest grid where the grid problem is solved by direct methods. In order to obtain approximate solutions on finer grids, the iteration method is used; the initial guess is taken by interpolation of the approximate solution from the preceeding coarser grid. It has been proved that the convergence rate of this algorithm does not depend on the number of unknowns and the number of grids.
@article{SJVM_1998_1_3_a1,
     author = {L. V. Gilyova},
     title = {A~cascadic multigrid algorithm in the finite element method for the threedimensional {Dirichlet} problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {217--226},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a1/}
}
TY  - JOUR
AU  - L. V. Gilyova
TI  - A~cascadic multigrid algorithm in the finite element method for the threedimensional Dirichlet problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 217
EP  - 226
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a1/
LA  - ru
ID  - SJVM_1998_1_3_a1
ER  - 
%0 Journal Article
%A L. V. Gilyova
%T A~cascadic multigrid algorithm in the finite element method for the threedimensional Dirichlet problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 217-226
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a1/
%G ru
%F SJVM_1998_1_3_a1
L. V. Gilyova. A~cascadic multigrid algorithm in the finite element method for the threedimensional Dirichlet problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 3, pp. 217-226. http://geodesic.mathdoc.fr/item/SJVM_1998_1_3_a1/

[1] Deuflhard P., Cascadic conjugate gradient methods for elliptic partial differential equations. I. Algorithm and numerical results, Technical Report SC 93-23, Konrad-Zuse-Zentrum, Berlin, 1993 | MR

[2] Deuflhard P., “Cascadic conjugate gradient methods for elliptic partial differential equations. Algorithm and numerical results”, Domain decomposition methods in scientific and engineering computing, Proceedings of 7-th International Conference on Domain Decomposition Methods 1993, Contemp. Math., 180, AMS, Providence, 1994, 29–42 | MR

[3] Shaidurov V. V., Some estimates of the rate of convergence for the cascadic conjugate-gradient method, Preprint No 4, Otto-von-Guericke-Universität, Magdeburg, 1994

[4] Shaidurov V. V., “Some estimates of the rate of convergence for the cascadic conjugate-gradient method”, Computers Math. Applic., 31:4–5 (1996), 161–171 | DOI | MR | Zbl

[5] Shaidurov V. V., “The convergence of the cascadic conjugate-gradient method under a deficient regularity”, Problems and Methods in Mathematical Physics, Teubner, Stuttgart, 1994, 185–194 | MR | Zbl

[6] Bornemann F. A., On the convergence of cascadic iterations for elliptic problems, Preprint SC 94-8, Konrad-Zuse-Zentrum, Berlin, 1994

[7] Shaidurov V. V., “Cascadic algorithm with nested subspaces in domains with curvilinear boundary”, Advanced Mathematics: Computations and Applications, eds. A. S. Alekseev and N. S. Bakhvalov, NCC Publisher, Novosibirsk, 1995, 588–595 | MR

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[9] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[10] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[11] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[12] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[13] Lebedev V. I., Finogenov S. A., ZhVMiMF, 13:1 (1973), 18–33 | MR | Zbl