On the $h$-$p$ version of the finite element method for one-dimensional boundary value problem with singularity of a~solution
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 153-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper analyzes the $h$-$p$ version of the finite element method for a one-dimensional model boundary value problem with coordinated degeneration of initial data and with strong singularity of a solution. The scheme of the finite element method is constructed on the basis of the definition of $R_\nu$-generalized solution to the problem, and the finite element space contains singular power functions. By using meshes with concentration at a singular point and by constructing the linear degree vector of approximating functions in a special way, a nearly optimal two-sided exponential estimate is obtained for the residual of the finite element method.
@article{SJVM_1998_1_2_a4,
     author = {V. A. Rukavishnikov and A. Yu. Bespalov},
     title = {On the $h$-$p$ version of the finite element method for one-dimensional boundary value problem with singularity of a~solution},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {153--170},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a4/}
}
TY  - JOUR
AU  - V. A. Rukavishnikov
AU  - A. Yu. Bespalov
TI  - On the $h$-$p$ version of the finite element method for one-dimensional boundary value problem with singularity of a~solution
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 153
EP  - 170
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a4/
LA  - en
ID  - SJVM_1998_1_2_a4
ER  - 
%0 Journal Article
%A V. A. Rukavishnikov
%A A. Yu. Bespalov
%T On the $h$-$p$ version of the finite element method for one-dimensional boundary value problem with singularity of a~solution
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 153-170
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a4/
%G en
%F SJVM_1998_1_2_a4
V. A. Rukavishnikov; A. Yu. Bespalov. On the $h$-$p$ version of the finite element method for one-dimensional boundary value problem with singularity of a~solution. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 2, pp. 153-170. http://geodesic.mathdoc.fr/item/SJVM_1998_1_2_a4/

[1] Babuška I. and Dorr M. R., “Error estimates for the combined $h$ and $p$ versions of the finite element method”, Numer. Math., 37 (1981), 252–277 | MR

[2] Babuška I. and Guo B. Q., “The $h$-$p$ version of the finite element method for domains with curved boundaries”, SIAM J. Numer. Anal., 25 (1988), 837–861 | DOI | MR | Zbl

[3] Berestetskiy V. B., Lifshits E. M. and Pitaevskiy L. P., Relativistic Quantum Theory, Nauka, M., 1968 (in Russian)

[4] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[5] Gui W. and Babuška I., “The $h$, $p$ and $h$-$p$ versions of the finite element method in 1 dimension: Part I. The error analysis of the $p$-version”, Numer. Math., 49 (1998), 577–612 | DOI | MR

[6] Gui W. and Babuška I., “The $h$, $p$ and $h$-$p$ versions of the finite element method in 1 dimension: Part II. The error analysis of the $h$- and $h$-$p$ versions”, Numer. Math., 49 (1986), 613–657 | DOI | MR | Zbl

[7] Gui W. and Babuška I., “The $h$, $p$ and $h$-$p$ versions of the finite element method in 1 dimension: Part III. The adaptive $h$-$p$ version”, Numer. Math., 49 (1986), 659–683 | DOI | MR | Zbl

[8] Guo B. and Babuška I., “The $h$-$p$ version of the finite element method: Part I. The basic approximation results”, Comp. Mech., 1 (1986), 21–41 | DOI | Zbl

[9] Guo B. and Babuška I., “The $h$-$p$ version of the finite element method: Part II. General results and applications”, Comp. Mech., 1 (1986), 203–220 | DOI | Zbl

[10] Hardy G. H., Littlewood J. E. and Polya G., Inequalities, Cambridge University Press, Cambridge, 1934

[11] Krylov V. I., “On the problem of ionization cross-section of the hydrogen-like atom by fast electrons in a uniform electric field”, Kratkie Soobscheniya FIAN, 8 (1995), 90–94 (in Russian)

[12] Landau L. D. and Lifshits E. M., Quantum Mechanics, Nauka, M., 1974 (in Russian) | MR

[13] Landau L. D. and Lifshits E. M., Electrodynamics of Continuous Medium, Nauka, M., 1982 (in Russian) | MR

[14] Soviet Math., Dokl., 33:3 (1988) | MR | MR | Zbl

[15] Rukavishnikov V. A., On the $R_\nu$-generalized solution of the Dirichlet problem in a rectangle, Preprint, USSR Acad. Sci. Far-Eastern Branch. Comp. Center, Vladivostok, 1989 (in Russian)

[16] Soviet Math., Dokl., 40:3 (1990) | MR | Zbl

[17] Rukavishnikov V. A., “On weight estimates of errors of array method for solving Helmgolts equation”, Numerical Analysis and Mathematical Modelling, 24, Banach Center Publications, Warsaw, 1990, 397–408 | MR | Zbl

[18] Russian Acad. Sci. Dokl. Math., 50:1 (1995) | MR | Zbl

[19] Rukavishnikov V. A., “Study of a difference scheme for the boundary value problem with boundary conditions of changing type and with coordinated degeneration of initial data”, Numerical Analysis Methods, Part 2, Dalnauka, Vladivostok, 1995, 4–29 (in Russian)

[20] Rukavishnikov V. A., “On the Dirichlet problem for the second order elliptic equation with noncoordinated degeneration of initial data”, Differencialnye Uravneniya, 32 (1996), 402–408 (in Russian) | MR | Zbl

[21] Rukavishnikov V. A. and Rukavishnikova E. I., “On the rate of convergence of the finite element method for the Dirichlet problem with coordinated degeneration of initial data”, Numerical Analysis Methods, Dalnauka, Vladivostok, 1993, 22–48 (in Russian)

[22] Russian Acad. Sci. Dokl. Math., 50:2 (1995) | MR | Zbl