Step-by-step inversion method for elasticity problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 89-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a new efficient method for solving the difference problem in the domains of a standard shape for the elasticity problems (step-by-step inversion method) for two-dimensional case. $N^{3/2}$ arithmetic operations are required for obtaining a solution to the problem by this method, $N$ is the number of unknowns. It is greater than $N\ln(N)$ – the number of operations necessary to realize the conventional efficient direct methods for equations of the elliptic kind with separated variables (the fast Fourier transform, cyclic reduction technique). But it is considerable less than $N^3$ – the number of operations necessary to realize the Gauss type method for this problem.
@article{SJVM_1998_1_1_a7,
     author = {S. B. Sorokin},
     title = {Step-by-step inversion method for elasticity problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a7/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - Step-by-step inversion method for elasticity problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 89
EP  - 97
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a7/
LA  - en
ID  - SJVM_1998_1_1_a7
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T Step-by-step inversion method for elasticity problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 89-97
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a7/
%G en
%F SJVM_1998_1_1_a7
S. B. Sorokin. Step-by-step inversion method for elasticity problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 89-97. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a7/

[1] Konovalov A. N., Sorokin S. B., Structure of elasticity theory equations. Static problem, Preprint No 665, USSR Acad. Sci. Sib. Branch. Comp. Center, Novosibirsk, 1986, 26 pp. (in Russian) | MR

[2] Konovalov A. N., “Numerical methods in'static elasticity theory problems”, Sib. Math. J., 36:3 (1995), 573–589 | DOI | MR | Zbl

[3] Konovalov A. N., “Numerical methods in dynamic elasticity theory problems”, Sib. Math. J., 38:3 (1997), 551–568 | DOI | MR | Zbl

[4] Bukenov M. M., Kuznetsov Yu. A., On a spectral problem of elasticity theory, Preprint No 81, USSR Acad. Sci. Sib. Branch. Comp. Center, Novosibirsk, 1981, 13 pp. (in Russian)

[5] Film A. N., Applied Mechanics of Solid, Nauka, M., 1978 (in Russian)

[6] Umansky C. E., Optimization of the Approximate Methods of Solving the Boundary Value Problems in Mechanics, Naukova dumka, Kiev, 1983 (in Russian)

[7] Samarsky A. A., Difference Schemes Theory, Nauka, M., 1983 (in Russian)

[8] Gantmacher F. R., The Theory of Matrices, Nauka, M., 1988 (in Russian) | MR

[9] Samarsky A. A., Nikolaev E. S., Methods of Solving Grid Equations, Nauka, M., 1983 (in Russian)