Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Introducted here, is the concept of ($\varepsilon,\delta$)-Hugoniot's condition being the relatioship which links generalised solution magnitudes in points $(t-\delta,x(t)+\varepsilon)$ and $(t+\delta,x(t)-\varepsilon)$ for both sides of non-stationary shock wave front line $x=x(t)$. It is showed here, that the explicit bi-layer with respect to time conservative difference schemes for $\delta\ne0$ approximate ($\varepsilon,\delta$)-Hugoniot's conditions only with the first order, independent of their accuracy for smooth solutions. At the same time, if the front lines are quite smooth, then for $\delta=0$ these schemes approximate ($\varepsilon,0$)-Hugoniot's conditions with the same order they have for smooth solutions.
@article{SJVM_1998_1_1_a6,
     author = {V. V. Ostapenko},
     title = {Approximation of {Hugoniot's} conditions by explicit conservative difference schemes for non-stationar shock waves},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/}
}
TY  - JOUR
AU  - V. V. Ostapenko
TI  - Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 77
EP  - 88
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/
LA  - ru
ID  - SJVM_1998_1_1_a6
ER  - 
%0 Journal Article
%A V. V. Ostapenko
%T Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 77-88
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/
%G ru
%F SJVM_1998_1_1_a6
V. V. Ostapenko. Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/

[1] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[3] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1993 | MR

[4] Samarskii A. F., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR

[5] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya (primenenie k gazovoi dinamike), Nauka, Novosibirsk, 1985 | MR | Zbl

[6] Vorozhtsov E. V., Yanenko N. N., Metod lokalizatsii osobennostei pri chislennom reshenii zadach gazovoi dinamiki, Nauka, Novosibirsk, 1985 | Zbl

[7] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerodinamiki, Nauka, M., 1990 | MR

[8] Goldin V. Ya., Kalitin N. N., Shitova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiz., 5:5 (1965), 938–944 | MR

[9] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[10] Kolgan V. P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zhurn. vychisl. matem. i mat. fiz., 18:5 (1978), 1340–1345 | MR | Zbl

[11] Kholodov A. S., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiz., 10:6 (1980), 1601–1620 | MR | Zbl

[12] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[13] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl

[14] Pinchukov V. I., “O postroenii monotonnykh skhem tipa prediktor-korrektor proizvolnogo poryadka approksimatsii”, Mat. modelirovanie, 3:9 (1991), 95–103 | MR | Zbl

[15] Ostapenko V. V., “O povyshenii poryadka slaboi approksimatsii zakonov sokhraneniya na razryvnykh resheniyakh”, Zhurn. vychisl. matem. i mat. fiz., 36:10 (1996), 146–157 | MR | Zbl

[16] Ostapenko V. V., “Eksperimentalnoe izuchenie razlichiya mezhdu poryadkami approksimatsii i tochnosti”, Prilozhenie k knige: Godunov S. K., Vospominanie o raznostnykh skhemakh, Nauchnaya kniga, Novosibirsk, 1997

[17] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zhurn. vychisl. matem. i mat. fiz., 37:10 (1997), 1201–1212 | MR | Zbl

[18] Carpenter M. N., Casper J., “Computational considerations for the simulations of discontinuos flows”, Barriers and challenges in computational fluid dynamics, eds. V. Venkatakrishnan, Kluwer academic publishing, 1997 | MR

[19] Casper J., Carpenter M. N., “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998) | MR | Zbl

[20] Ostapenko V. V., “O lokalnom vypolnenii zakonov sokhraneniya na fronte “razmazannoi” udarnoi volny”, Mat. modelirovanie, 2:7 (1990), 129–138 | MR | Zbl