Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1998_1_1_a6, author = {V. V. Ostapenko}, title = {Approximation of {Hugoniot's} conditions by explicit conservative difference schemes for non-stationar shock waves}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {77--88}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/} }
TY - JOUR AU - V. V. Ostapenko TI - Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1998 SP - 77 EP - 88 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/ LA - ru ID - SJVM_1998_1_1_a6 ER -
%0 Journal Article %A V. V. Ostapenko %T Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 1998 %P 77-88 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/ %G ru %F SJVM_1998_1_1_a6
V. V. Ostapenko. Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a6/
[1] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl
[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[3] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1993 | MR
[4] Samarskii A. F., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR
[5] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya (primenenie k gazovoi dinamike), Nauka, Novosibirsk, 1985 | MR | Zbl
[6] Vorozhtsov E. V., Yanenko N. N., Metod lokalizatsii osobennostei pri chislennom reshenii zadach gazovoi dinamiki, Nauka, Novosibirsk, 1985 | Zbl
[7] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerodinamiki, Nauka, M., 1990 | MR
[8] Goldin V. Ya., Kalitin N. N., Shitova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiz., 5:5 (1965), 938–944 | MR
[9] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[10] Kolgan V. P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zhurn. vychisl. matem. i mat. fiz., 18:5 (1978), 1340–1345 | MR | Zbl
[11] Kholodov A. S., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiz., 10:6 (1980), 1601–1620 | MR | Zbl
[12] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[13] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl
[14] Pinchukov V. I., “O postroenii monotonnykh skhem tipa prediktor-korrektor proizvolnogo poryadka approksimatsii”, Mat. modelirovanie, 3:9 (1991), 95–103 | MR | Zbl
[15] Ostapenko V. V., “O povyshenii poryadka slaboi approksimatsii zakonov sokhraneniya na razryvnykh resheniyakh”, Zhurn. vychisl. matem. i mat. fiz., 36:10 (1996), 146–157 | MR | Zbl
[16] Ostapenko V. V., “Eksperimentalnoe izuchenie razlichiya mezhdu poryadkami approksimatsii i tochnosti”, Prilozhenie k knige: Godunov S. K., Vospominanie o raznostnykh skhemakh, Nauchnaya kniga, Novosibirsk, 1997
[17] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zhurn. vychisl. matem. i mat. fiz., 37:10 (1997), 1201–1212 | MR | Zbl
[18] Carpenter M. N., Casper J., “Computational considerations for the simulations of discontinuos flows”, Barriers and challenges in computational fluid dynamics, eds. V. Venkatakrishnan, Kluwer academic publishing, 1997 | MR
[19] Casper J., Carpenter M. N., “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998) | MR | Zbl
[20] Ostapenko V. V., “O lokalnom vypolnenii zakonov sokhraneniya na fronte “razmazannoi” udarnoi volny”, Mat. modelirovanie, 2:7 (1990), 129–138 | MR | Zbl