Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1998_1_1_a3, author = {A. N. Konovalov}, title = {Conjugate-factorized models in mathematical physics problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {25--57}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/} }
A. N. Konovalov. Conjugate-factorized models in mathematical physics problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 25-57. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/
[1] Konovalov A. N., Yanenko N. N., “Modulnyi printsip postroeniya programm kak osnova sozdaniya paketa prikladnykh programm resheniya zadach mekhaniki sploshnoi sredy”, Kompleksy programm matematicheskoi fiziki, Novosibirsk, 1972, 48–54 | MR
[2] Karpov V. Ya., Koryagin D. A., Samarskii A. A., “Printsipy razrabotki paketov prikladnykh programm dlya zadach matematicheskoi fiziki”, Zhurn. vychisl. matem. i mat. fiziki, 18:2 (1978), 158–167 | MR
[3] Konovalov A. N., “O printsipakh postroeniya paketa programm dlya resheniya zadach matematicheskoi fiziki”, Acta polytechnica. Práce ČVUT Praze Ser. IV, 1975, 37–49
[4] Konovalov A. N., “Modulnyi analiz vychislitelnogo algoritma v zadache planovogo vytesneniya nefti vodoi”, Tr. III seminara po kompleksam programm mat. fiziki, Novosibirsk, 1973, 81–94
[5] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975
[6] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “O predstavlenii raznostnykh skhem matematicheskoi fiziki v operatornoi forme”, Dokl. AN SSSR, 258:5 (1981), 1092–1096 | MR
[7] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Ispolzovanie metoda opornykh operatorov dlya postroeniya raznostnykh analogov operatsii tenzornogo analiza”, Differents. uravneniya, 18:7 (1982), 1251–1256 | MR
[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[9] Oganesyan L. A., Rivkind V. Ya., Rukhovets L. A., “Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii”, Tr. seminara “Differents. uravneniya i ikh primeneniya”, v. 5, Vilnyus, 1973; т. 8, 1974
[10] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl
[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[12] Konovalov A. N., Sorokin S. B., Struktura uravnenii teorii uprugosti. Statika, Preprint No 665, AN SSSR. Sib. otd-nie. VTs, Novosibirsk, 1986, 26 pp. | MR
[13] Konovalov A. N., “Chislennye metody v staticheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 36:3 (1995), 573–589 | MR | Zbl
[14] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. Ch. I”, Zhurn. vychisl. matem. i mat. fiziki, 4:3 (1964), 449–465 | MR | Zbl
[15] Konovalov A. N., Reshenie zadach teorii uprugosti v napryazheniyakh, Izd. NGU, Novosibirsk, 1979 | MR
[16] Tsurikov N. V., Chislennoe reshenie zadach teorii uprugosti v proizvolnoi krivolineinoi sisteme koordinat, Dis. $\dots$ kand. fiz.-mat. nauk: 01.01.07, Novosibirsk, 1992
[17] Tsurikov N. V., “Ob approksimatsii kovariantnykh proizvodnykh komponent vektorov i tenzorov v proizvolnoi sisteme koordinat”, Variatsionnye metody v zadachakh chislennogo analiza, Novosibirsk, 1986, 150–156 | Zbl
[18] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[19] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967
[20] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR
[21] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 4:3 (1964), 580–584 | MR
[22] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[23] Peaceman D. W., Rachford H. H., Jr., “On the numerical solution of parabolic and elliptic differential equations”, SIAM J., 3:1 (1955), 28–41 | MR | Zbl
[24] Douglas J., Jr., Rachford H. H., Jr., “On the numerical solution of heat conduction problems in two and three spaces variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–429 | MR
[25] Wachspress E., “Extended application of alternating direction implicit iteration model problem theory”, SIAM J. Appl. Math., 11:3 (1963), 994–1016 | DOI | MR
[26] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[27] Marchuk G. I., Kuznetsov Yu. A., Iteratsionnye metody i kvadratichnye funktsionaly, Nauka, Novosibirsk, 1972 | Zbl
[28] Konovalov A. N., “Variatsionnaya optimizatsiya iteratsionnykh metodov rasschepleniya”, Sib. mat. zhurn., 38:2 (1997), 312–325 | MR | Zbl
[29] Kantorovich L. V., “Ob odnom effektivnom metode resheniya ekstremalnykh zadach dlya kvadratichnogo funktsionala”, Dokl. AN SSSR, 48:7 (1945), 483–487
[30] Kantorovich L. V., “Funktsionalnyi analiz i prikladnaya matematika”, Uspekhi mat. nauk, 3:6 (1948), 89–185 | MR | Zbl
[31] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl
[32] Samarskii A. A., Andreev V. B., “Iteratsionnye skhemy peremennykh napravlenii dlya chislennogo resheniya zadachi Dirikhle”, Zhurn. vychisl. matem. i mat. fiziki, 4:6 (1964), 1025–1036 | MR
[33] Konovalov A. N., “Diagonalnye regulyarizatory v ploskikh staticheskikh zadachakh teorii uprugosti”, Dokl. RAN, 340:4 (1995), 470–472 | MR | Zbl
[34] Konovalov A. N., “Iteratsionnye metody v zadachakh teorii uprugosti”, Dokl. RAN, 340:5 (1995), 589–591 | MR | Zbl
[35] Konovalov A. N., “Chislennye metody v dinamicheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 38:3 (1997), 551–569 | MR
[36] Sorokin S. B., Sopryazhenno-faktorizovannye modeli v teorii plastin, Preprint No 1069, RAN. Sib. otd-nie. VTs, Novosibirsk, 1996, 15 pp. | MR
[37] Konovalov A. N., Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti, Nauka, Novosibirsk, 1988 | MR