Conjugate-factorized models in mathematical physics problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 25-57
Voir la notice de l'article provenant de la source Math-Net.Ru
Linear mathematical models are studied, which are based on a certain law (laws) of conservation. It is shown that in this case the basic operators of a continuous model have initially a conjugate-factorized structure. This property allows one to simplify essentially the transfer to adequate grid models and to construct efficient algorithms to determine parameters of a model in different statements. The results obtained can be considered as further development of the theory of support operators for difference schemes of the divergent form.
@article{SJVM_1998_1_1_a3,
author = {A. N. Konovalov},
title = {Conjugate-factorized models in mathematical physics problems},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {25--57},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/}
}
A. N. Konovalov. Conjugate-factorized models in mathematical physics problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 25-57. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/