Conjugate-factorized models in mathematical physics problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 25-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear mathematical models are studied, which are based on a certain law (laws) of conservation. It is shown that in this case the basic operators of a continuous model have initially a conjugate-factorized structure. This property allows one to simplify essentially the transfer to adequate grid models and to construct efficient algorithms to determine parameters of a model in different statements. The results obtained can be considered as further development of the theory of support operators for difference schemes of the divergent form.
@article{SJVM_1998_1_1_a3,
     author = {A. N. Konovalov},
     title = {Conjugate-factorized models in mathematical physics problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {25--57},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/}
}
TY  - JOUR
AU  - A. N. Konovalov
TI  - Conjugate-factorized models in mathematical physics problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1998
SP  - 25
EP  - 57
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/
LA  - ru
ID  - SJVM_1998_1_1_a3
ER  - 
%0 Journal Article
%A A. N. Konovalov
%T Conjugate-factorized models in mathematical physics problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1998
%P 25-57
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/
%G ru
%F SJVM_1998_1_1_a3
A. N. Konovalov. Conjugate-factorized models in mathematical physics problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 25-57. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a3/

[1] Konovalov A. N., Yanenko N. N., “Modulnyi printsip postroeniya programm kak osnova sozdaniya paketa prikladnykh programm resheniya zadach mekhaniki sploshnoi sredy”, Kompleksy programm matematicheskoi fiziki, Novosibirsk, 1972, 48–54 | MR

[2] Karpov V. Ya., Koryagin D. A., Samarskii A. A., “Printsipy razrabotki paketov prikladnykh programm dlya zadach matematicheskoi fiziki”, Zhurn. vychisl. matem. i mat. fiziki, 18:2 (1978), 158–167 | MR

[3] Konovalov A. N., “O printsipakh postroeniya paketa programm dlya resheniya zadach matematicheskoi fiziki”, Acta polytechnica. Práce ČVUT Praze Ser. IV, 1975, 37–49

[4] Konovalov A. N., “Modulnyi analiz vychislitelnogo algoritma v zadache planovogo vytesneniya nefti vodoi”, Tr. III seminara po kompleksam programm mat. fiziki, Novosibirsk, 1973, 81–94

[5] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975

[6] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “O predstavlenii raznostnykh skhem matematicheskoi fiziki v operatornoi forme”, Dokl. AN SSSR, 258:5 (1981), 1092–1096 | MR

[7] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Ispolzovanie metoda opornykh operatorov dlya postroeniya raznostnykh analogov operatsii tenzornogo analiza”, Differents. uravneniya, 18:7 (1982), 1251–1256 | MR

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Oganesyan L. A., Rivkind V. Ya., Rukhovets L. A., “Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii”, Tr. seminara “Differents. uravneniya i ikh primeneniya”, v. 5, Vilnyus, 1973; т. 8, 1974

[10] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[12] Konovalov A. N., Sorokin S. B., Struktura uravnenii teorii uprugosti. Statika, Preprint No 665, AN SSSR. Sib. otd-nie. VTs, Novosibirsk, 1986, 26 pp. | MR

[13] Konovalov A. N., “Chislennye metody v staticheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 36:3 (1995), 573–589 | MR | Zbl

[14] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. Ch. I”, Zhurn. vychisl. matem. i mat. fiziki, 4:3 (1964), 449–465 | MR | Zbl

[15] Konovalov A. N., Reshenie zadach teorii uprugosti v napryazheniyakh, Izd. NGU, Novosibirsk, 1979 | MR

[16] Tsurikov N. V., Chislennoe reshenie zadach teorii uprugosti v proizvolnoi krivolineinoi sisteme koordinat, Dis. $\dots$ kand. fiz.-mat. nauk: 01.01.07, Novosibirsk, 1992

[17] Tsurikov N. V., “Ob approksimatsii kovariantnykh proizvodnykh komponent vektorov i tenzorov v proizvolnoi sisteme koordinat”, Variatsionnye metody v zadachakh chislennogo analiza, Novosibirsk, 1986, 150–156 | Zbl

[18] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[19] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[20] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[21] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 4:3 (1964), 580–584 | MR

[22] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[23] Peaceman D. W., Rachford H. H., Jr., “On the numerical solution of parabolic and elliptic differential equations”, SIAM J., 3:1 (1955), 28–41 | MR | Zbl

[24] Douglas J., Jr., Rachford H. H., Jr., “On the numerical solution of heat conduction problems in two and three spaces variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–429 | MR

[25] Wachspress E., “Extended application of alternating direction implicit iteration model problem theory”, SIAM J. Appl. Math., 11:3 (1963), 994–1016 | DOI | MR

[26] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[27] Marchuk G. I., Kuznetsov Yu. A., Iteratsionnye metody i kvadratichnye funktsionaly, Nauka, Novosibirsk, 1972 | Zbl

[28] Konovalov A. N., “Variatsionnaya optimizatsiya iteratsionnykh metodov rasschepleniya”, Sib. mat. zhurn., 38:2 (1997), 312–325 | MR | Zbl

[29] Kantorovich L. V., “Ob odnom effektivnom metode resheniya ekstremalnykh zadach dlya kvadratichnogo funktsionala”, Dokl. AN SSSR, 48:7 (1945), 483–487

[30] Kantorovich L. V., “Funktsionalnyi analiz i prikladnaya matematika”, Uspekhi mat. nauk, 3:6 (1948), 89–185 | MR | Zbl

[31] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[32] Samarskii A. A., Andreev V. B., “Iteratsionnye skhemy peremennykh napravlenii dlya chislennogo resheniya zadachi Dirikhle”, Zhurn. vychisl. matem. i mat. fiziki, 4:6 (1964), 1025–1036 | MR

[33] Konovalov A. N., “Diagonalnye regulyarizatory v ploskikh staticheskikh zadachakh teorii uprugosti”, Dokl. RAN, 340:4 (1995), 470–472 | MR | Zbl

[34] Konovalov A. N., “Iteratsionnye metody v zadachakh teorii uprugosti”, Dokl. RAN, 340:5 (1995), 589–591 | MR | Zbl

[35] Konovalov A. N., “Chislennye metody v dinamicheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 38:3 (1997), 551–569 | MR

[36] Sorokin S. B., Sopryazhenno-faktorizovannye modeli v teorii plastin, Preprint No 1069, RAN. Sib. otd-nie. VTs, Novosibirsk, 1996, 15 pp. | MR

[37] Konovalov A. N., Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti, Nauka, Novosibirsk, 1988 | MR