Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_1998_1_1_a2, author = {A. N. Gorban'}, title = {Generalized approximation theorem and computational capabilities of neural networks}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {11--24}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a2/} }
TY - JOUR AU - A. N. Gorban' TI - Generalized approximation theorem and computational capabilities of neural networks JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 1998 SP - 11 EP - 24 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a2/ LA - ru ID - SJVM_1998_1_1_a2 ER -
A. N. Gorban'. Generalized approximation theorem and computational capabilities of neural networks. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 1 (1998) no. 1, pp. 11-24. http://geodesic.mathdoc.fr/item/SJVM_1998_1_1_a2/
[1] Zurada J. M., Introduction to artificial neural systems, PWS Publ. Co., 1992
[2] Haykin S., Neural networks. A comprehensive foundations, McMillan College Publ. Co., N.Y., 1994
[3] Gorban A. N., Rossiev D. A., Neironnye seti na personalnom kompyutere, Nauka, Novosibirsk, 1996 | MR
[4] Le Cun Y., Denker J. S., Solla S. A., “Optimal brain damage”, Advances in Neural Information Processing Systems II (Denver 1989), Morgan Kaufman, San Mateo, 1990, 598–605
[5] Gorban A. N., Obuchenie neironnykh setei, ParaGraph, M., 1990; Training neural networks, Neurocomputing, 6, Scientific Siberian A. AMSE Trans., 1993, 134 pp.
[6] Prechelt L., “Comparing adaptive and non-adaptive connection pruning with pure early stopping”, Progress in Neural Information Processing (Hong Kong, September 24–27, 1996), v. 1, Springer, 1996, 46–52
[7] Cybenko G., “Approximation by superposition of a sigmoidal function”, Mathematics of Control, Signals, and Systems, 2 (1989), 303–314 | DOI | MR | Zbl
[8] Hornik K., Stinchcombe M., White H., “Multilayer feedforward networks are universal approximators”, Neural Networks, 2 (1989), 359–366 | DOI
[9] Kochenov D. A., Rossiev D. A., “Approximations of functions of C[A,B] class by neural-net predictors (architectures and results)”, Neurocomputing, 6, Scientific Siberian A. AMSE Trans., 1993, 189–203
[10] Gilev S. E., Gorban A. N., “On completness of the class of functions computable by neural networks”, Proc. of the World Congress on Neural Networks (WCNN'96) (Sept. 15–18, 1996, San Diego), Lawrens Erlbaum Accociates, CA, 1996, 984–991
[11] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii menshego chisla peremennykh”, Dokl. AN SSSR, 108:2 (1956), 179–182 | MR
[12] Arnold V. I., “O funktsiyakh trekh peremennykh”, Dokl. AN SSSR, 114:4 (1957), 679–681 | MR
[13] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo”, Dokl. AN SSSR, 114:5 (1957), 953–956 | MR
[14] Vitushkin A. G., O mnogomernykh variatsiyakh, Fizmatgiz, M., 1955
[15] Stone M. N., “The generalized Weierstrass approximation theorem”, Math. Mag., 21 (1948), 167–183 ; 237–254 | DOI | MR
[16] Shefer X., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR