Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a9, author = {V. P. Tanana and B. A. Markov}, title = {On the error in determining the protective layer boundary in the inverse heat problem}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {143--159}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/} }
TY - JOUR AU - V. P. Tanana AU - B. A. Markov TI - On the error in determining the protective layer boundary in the inverse heat problem JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 143 EP - 159 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/ LA - ru ID - SJIM_2023_26_4_a9 ER -
%0 Journal Article %A V. P. Tanana %A B. A. Markov %T On the error in determining the protective layer boundary in the inverse heat problem %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 143-159 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/ %G ru %F SJIM_2023_26_4_a9
V. P. Tanana; B. A. Markov. On the error in determining the protective layer boundary in the inverse heat problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 143-159. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/
[1] O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, Extreme Methods for Solving Ill-Posed Problems and Applications to Inverse Heat Transfer Problems, Nauka, M., 1988 (in Russian) | MR
[2] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon, Oxford, 1959 | MR
[3] A. F. Chudnovskii, Thermophysics of Soils, Nauka, M., 1976 (in Russian)
[4] A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems, Fizmatlit, M., 1995 (in Russian)
[5] A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems, Nauka, M., 1979 (in Russian)
[6] V. Ya. Denisov, Introduction to the Theory of Inverse Problems, Mosk. Gos. Univ., M., 1994 (in Russian)
[7] A. S. Leonov, Solving Ill-Posed Inverse Problems. An Outline of the Theory, Practical Algorithms, and Demonstrations in MATLAB, URSS, M., 2013 (in Russian)
[8] A. G. Yagola, Wang Yanfei, I. E. Stepanova, and V. N. Titarenko, Inverse Problems and Methods for Their Solution, Lab. Znanii, M., 2014 (in Russian)
[9] A. N. Tikhonov and V. B. Glasko, “Methods of determining the surface temperature of a body”, USSR Comput. Math. Math. Phys., 7:4 (1967), 267–273 | Zbl
[10] M. M. Lavrentyev, V. G. Romanov, and S. P. Shishatskii, Some Problems of Mathematical Physics and Analysis, Nauka, M., 1980 (in Russian) | MR
[11] S. I. Kabanikhin, Inverse and Ill-Posed problems, Sib. Nauchn. Izd., Novosibirsk, 2009 (in Russian)
[12] V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Applications, Nauka, M., 1978 (in Russian)
[13] V. V. Vasin, “The stable evaluation of a derivative in space $C(-\infty,\infty)$”, USSR Comput. Math. Math. Phys., 13:6 (1973), 16–24 | DOI
[14] T. F. Dolgopolova and V. K. Ivanov, “On numerical differentiation”, USSR Comput. Math. Math. Phys., 6:3 (1966), 223–232 | DOI | MR
[15] V. P. Tanana, “On the reduction of an inverse boundary value problem to a sequential solution of two ill-posed problems”, Sib. Zh. Vychisl. Mat., 23:2 (2020), 219–232 (in Russian) | Zbl
[16] V. A. Zorich, Mathematical Analysis, v. 2, Nauka, M., 1984 (in Russian) | MR
[17] Tanana V., Sidikova A., Optimal Methods for Ill-Posed Problems With Applications to Heat Conduction, De Gruyter, Berlin, 2018 | MR | Zbl
[18] A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics, Mosk. Gos. Univ., M., 2004 (in Russian) | MR