On the error in determining the protective layer boundary in the inverse heat problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 143-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the problem of determining the error introduced by inaccuracy in determining the thickness of a protective heat-resistant coating of composite materials. The mathematical problem is the heat equation on an inhomogeneous half-line. The temperature on the outer side of the half-line ($x = 0$) is considered unknown over an infinite time interval. To find it, the temperature is measured at the interface of the media at the point $x = x_0$. An analytical study of the direct problem is carried out and enables a rigorous statement of the inverse problem and determining the functional spaces in which it is natural to solve the inverse problem. The main difficulty that the present paper aims at solving is obtaining an estimate for the error of the approximate solution. To estimate the conditional correctness modulus, the projection regularization method is used; this allows obtaining order-accurate estimates.
Keywords: error estimate, conditional correctness modulus, ill-posed problem.
Mots-clés : Fourier transform
@article{SJIM_2023_26_4_a9,
     author = {V. P. Tanana and B. A. Markov},
     title = {On the error in determining the protective layer boundary in the inverse heat problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {143--159},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - B. A. Markov
TI  - On the error in determining the protective layer boundary in the inverse heat problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 143
EP  - 159
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/
LA  - ru
ID  - SJIM_2023_26_4_a9
ER  - 
%0 Journal Article
%A V. P. Tanana
%A B. A. Markov
%T On the error in determining the protective layer boundary in the inverse heat problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 143-159
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/
%G ru
%F SJIM_2023_26_4_a9
V. P. Tanana; B. A. Markov. On the error in determining the protective layer boundary in the inverse heat problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 143-159. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a9/

[1] O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, Extreme Methods for Solving Ill-Posed Problems and Applications to Inverse Heat Transfer Problems, Nauka, M., 1988 (in Russian) | MR

[2] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon, Oxford, 1959 | MR

[3] A. F. Chudnovskii, Thermophysics of Soils, Nauka, M., 1976 (in Russian)

[4] A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems, Fizmatlit, M., 1995 (in Russian)

[5] A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems, Nauka, M., 1979 (in Russian)

[6] V. Ya. Denisov, Introduction to the Theory of Inverse Problems, Mosk. Gos. Univ., M., 1994 (in Russian)

[7] A. S. Leonov, Solving Ill-Posed Inverse Problems. An Outline of the Theory, Practical Algorithms, and Demonstrations in MATLAB, URSS, M., 2013 (in Russian)

[8] A. G. Yagola, Wang Yanfei, I. E. Stepanova, and V. N. Titarenko, Inverse Problems and Methods for Their Solution, Lab. Znanii, M., 2014 (in Russian)

[9] A. N. Tikhonov and V. B. Glasko, “Methods of determining the surface temperature of a body”, USSR Comput. Math. Math. Phys., 7:4 (1967), 267–273 | Zbl

[10] M. M. Lavrentyev, V. G. Romanov, and S. P. Shishatskii, Some Problems of Mathematical Physics and Analysis, Nauka, M., 1980 (in Russian) | MR

[11] S. I. Kabanikhin, Inverse and Ill-Posed problems, Sib. Nauchn. Izd., Novosibirsk, 2009 (in Russian)

[12] V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Applications, Nauka, M., 1978 (in Russian)

[13] V. V. Vasin, “The stable evaluation of a derivative in space $C(-\infty,\infty)$”, USSR Comput. Math. Math. Phys., 13:6 (1973), 16–24 | DOI

[14] T. F. Dolgopolova and V. K. Ivanov, “On numerical differentiation”, USSR Comput. Math. Math. Phys., 6:3 (1966), 223–232 | DOI | MR

[15] V. P. Tanana, “On the reduction of an inverse boundary value problem to a sequential solution of two ill-posed problems”, Sib. Zh. Vychisl. Mat., 23:2 (2020), 219–232 (in Russian) | Zbl

[16] V. A. Zorich, Mathematical Analysis, v. 2, Nauka, M., 1984 (in Russian) | MR

[17] Tanana V., Sidikova A., Optimal Methods for Ill-Posed Problems With Applications to Heat Conduction, De Gruyter, Berlin, 2018 | MR | Zbl

[18] A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics, Mosk. Gos. Univ., M., 2004 (in Russian) | MR