Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a8, author = {I. E. Svetov and A. P. Polyakova}, title = {Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted {Radon} transforms}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {125--142}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/} }
TY - JOUR AU - I. E. Svetov AU - A. P. Polyakova TI - Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 125 EP - 142 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/ LA - ru ID - SJIM_2023_26_4_a8 ER -
%0 Journal Article %A I. E. Svetov %A A. P. Polyakova %T Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 125-142 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/ %G ru %F SJIM_2023_26_4_a8
I. E. Svetov; A. P. Polyakova. Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 125-142. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/