Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a8, author = {I. E. Svetov and A. P. Polyakova}, title = {Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted {Radon} transforms}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {125--142}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/} }
TY - JOUR AU - I. E. Svetov AU - A. P. Polyakova TI - Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 125 EP - 142 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/ LA - ru ID - SJIM_2023_26_4_a8 ER -
%0 Journal Article %A I. E. Svetov %A A. P. Polyakova %T Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 125-142 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/ %G ru %F SJIM_2023_26_4_a8
I. E. Svetov; A. P. Polyakova. Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 125-142. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a8/
[1] Ludwig D., “The Radon transform on Euclidean space”, Commun. Pure Appl. Math., 19 (1966), 49–81 | DOI | MR | Zbl
[2] Helgason S., The Radon Transform, Progress in Mathematics, 5, Springer, N. Y., 1999 | DOI | MR
[3] Louis A. K., “Uncertainty, ghosts, and resolution in Radon problems”, The Radon Transform, 2019, 169–188 | DOI | MR | Zbl
[4] Natterer F., The Mathematics of Computerized Tomography, Wiley, Chichester, 1986 | DOI | MR | MR | Zbl
[5] Sharafutdinov V. A., Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | DOI | MR
[6] Sparr G., Strahlen K., Lindstrem K., Persson H. W., “Doppler tomography for vector fields”, Inverse Probl., 11:5 (1995), 1051–1061 | DOI | MR | Zbl
[7] Schuster T., “20 years of imaging in vector field tomography: a review”, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Dariation Therapy (IMRT), 2008, 389–424 | MR
[8] Polyakova A. P., “Reconstruction of a vector field in a ball from its normal Radon transform”, Journal of Mathematical Sciences, 205:3 (2015), 418–439 | DOI | MR | Zbl
[9] I. E. Svetov, “Approximate inversion method for the Radon transform operators of functions and the normal Radon transform of vector and symmetric 2-tensor fields in $\mathbb{R}^3$”, Sib. Elektron. Mat. Izv., 17 (2020), 1073–1087 (in Russian) | DOI | MR | Zbl
[10] Kunyansky L., “A mathematical model and inversion procedure for magneto-acousto-electric tomography”, Inverse Probl., 28:3 (2012), 035002 | DOI | MR | Zbl
[11] Ammari H., Grasland-Mongrain P., Millien P., Seppecher L, Seo J.-K., “A mathematical and numerical framework for ultrasonically-induced Lorentz force electrical impedance tomography”, J. Math. Pures Appl., 103:6 (2015), 1390–1409 | DOI | MR | Zbl
[12] Kunyansky L., McDugald E., Shearer B., “Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography”, Inverse Problems, 39:6 (2023), 065014 | DOI | MR | Zbl
[13] Derevtsov E. Yu., Svetov I. E., “Tomography of tensor fields in the plain”, Eurasian J. Math. Comput. Appl., 3:2 (2015), 24–68
[14] Louis A. K., “Inversion formulae for ray transforms in vector and tensor tomography”, Inverse Probl., 38:6 (2022), 065008 | DOI | MR | Zbl
[15] Borchers W., Sohr H., “On the equations $\mathrm{rot}\, v = g$ and $\mathrm{diver}\, u = f$ with zero boundary conditions”, Hokkaido Math. J., 19 (1990), 67–87 | DOI | MR | Zbl
[16] Backus G. E., “Poloidal and toroidal fields in geomagnetic field modeling”, Rev. Geophys., 24:1 (1986), 75–109 | DOI | MR
[17] Kazantsev S. G., Kardakov V. B., “Poloidal-Toroidal Decomposition of Solenoidal Vector Fields in the Ball”, Journal of Applied and Industrial Mathematics, 13:3 (2019), 480–499 | DOI | DOI | MR | Zbl
[18] I. E. Svetov and A. P. Polyakova, “Decomposition of symmetric tensor fields in $\mathbb{R}^3$”, Sib. Zh. Ind. Mat., 26:1 (2023), 161–178 | DOI | MR
[19] Weyl N., “The method of ortogonal projection in potential theory”, Duke Math. J., 7:1 (1940), 411–444 | DOI | MR | Zbl
[20] Svetov I. E., Derevtsov E. Yu., Volkov Yu. S., Schuster T., “A numerical solver based on $B$-splines for 2D vector field tomography in a refracting medium”, Math. Comput. Simul., 97 (2014), 207–223 | DOI | MR | Zbl