Backlund transformations of the relativistic Schrodinger equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 109-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the system of equations obtained on the basis of the relativistic Schrodinger equation and relating the potential, amplitude, and phase functions. Using the methods of the theory of consistency of systems of partial differential equations, we obtain completely integrable systems that relate only two functions of the above three. The systems found are related by Backlund transformations.
Keywords: relativistic Schrodinger equation, Backlund transformation, consistency condition.
@article{SJIM_2023_26_4_a7,
     author = {M. V. Neschchadim and A. A. Simonov},
     title = {Backlund transformations of the relativistic {Schrodinger} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {109--124},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a7/}
}
TY  - JOUR
AU  - M. V. Neschchadim
AU  - A. A. Simonov
TI  - Backlund transformations of the relativistic Schrodinger equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 109
EP  - 124
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a7/
LA  - ru
ID  - SJIM_2023_26_4_a7
ER  - 
%0 Journal Article
%A M. V. Neschchadim
%A A. A. Simonov
%T Backlund transformations of the relativistic Schrodinger equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 109-124
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a7/
%G ru
%F SJIM_2023_26_4_a7
M. V. Neschchadim; A. A. Simonov. Backlund transformations of the relativistic Schrodinger equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 109-124. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a7/

[1] L. V. Ovsyannikov, Group Analysis of Differential Equations, Nauka, M., 1978 (in Russian) | MR

[2] N. Kh. Ibragimov, Transformation Groups in Mathematical Physics, Nauka, M., 1983 (in Russian) | MR

[3] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York–Berlin–Heidelberg–Tokyo, 1986 | Zbl

[4] A. M. Vinogradov, Symmetries and Conservation Laws of Equations of Mathematical Physics, Faktorial, M., 1997 (in Russian)

[5] A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, The differential Constraint Method and Application in Gas Dynamics, Nauka, Novosibirsk, 1984 (in Russian) | MR

[6] N. Kh. Ibragimov and A. B. Shabat, “Evolution equations with a nontrivial Lie–Backlund group”, Funkts. Anal. Pril., 14:1 (1980), 25–36 (in Russian) | MR | Zbl

[7] N. Kh. Ibragimov and A. B. Shabat, “On infinite Lie–Backlund algebras”, Funkts. Anal. Pril., 14:4 (1980), 79–80 (in Russian) | MR | Zbl

[8] A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Introduction to the Geometry of Nonlinear Differential Equations, Nauka, M., 1983 (in Russian)

[9] A. M. Vinogradov, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, MTsNMO, M., 2021 (in Russian)

[10] Miura R. M., Backlund transformations, Lecture Notes in Mathematics, 515, Springer, Heidelberg, 1976 | DOI | MR | Zbl

[11] V. V. Zharinov, “On Backlund correspondences”, Math. USSR-Sb., 64:1 (1989), 277–293

[12] V. V. Zharinov, “Backlund correspondences for evolution equations in a multidimensional space”, Theor. Math. Phys., 147:1 (2006), 449–459 | DOI | Zbl

[13] M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | MR | Zbl

[14] O. V. Kaptsov, Methods for Integrating Partial Differential Equations, Fizmatlit, M., 2009 (in Russian)

[15] Yu. E. Anikonov and M. V. Neshchadim, “Generalized Cole–Hopf transformation”, J. Appl. Ind. Math., 12:3 (2018), 409–416 | DOI | DOI | MR | Zbl

[16] Yu. E. Anikonov and M. V. Neshchadim, “The method of differential relations and nonlinear inverse problems”, Sib. Zh. Ind. Mat., 18:2 (2015), 36–47 (in Russian) | MR | Zbl

[17] I. M. Gel'fand and O. V. Lokutsievskii, “The “sweep” method for solving difference equations”, Introduction to the Theory of Difference Schemes, 1962, 283–309 (in Russian)

[18] G. V. Akkuratov and V. I. Dmitriev, “Method for calculating the field of steady elastic vibrations in a layered medium”, U.S.S.R. Comput. Math. Math. Phys., 24:1 (1984), 166–176 | DOI | MR | Zbl | Zbl

[19] A. G. Fat'yanov and B. G. Mikhailenko, “Method for calculating unsteady wave fields in inelastic layered inhomogeneous media”, Dokl. Akad. Nauk SSSR, 301:4 (1988), 834–839 (in Russian)

[20] A. L. Karchevsky, “Analytical solution of Maxwell's equations in the frequency domain for horizontally layered anisotropic media”, Geol. Geophys., 48:8 (2007), 889–898 (in Russian)

[21] A. L. Karchevsky, “Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types”, J. Appl. Industrial. Math., 14:4 (2020), 648–665 | DOI | MR | Zbl

[22] Konopelchenko B. G., “The group structure of Backlund transformations”, Phys. Lett. A, 74:3–4 (1979), 189–192 | DOI | MR

[23] Sasaki R., “Canonical structure of Backlund transformations”, Phys. Lett. A, 78:5–6 (1980), 7–10 | DOI | MR

[24] Konopelchenko B. G., “Elementary Backlund transformations, nonlinear superposition principle and solution of the integrable equations”, Phys. Lett. A, 87:9 (1982), 445–448 | DOI | MR

[25] Kuznetsov V. B., Sklyanin E. K., “On Backlund transformations for many-body systems”, J. Physics A, 31:9 (1998), 2241–2251 | DOI | MR | Zbl

[26] N. M. Belousov, “Backlund transformation for the nonlinear Schrodinger equation”, Zap. Nauchn. Semin. POMI, 494, 2020, 6–22 (in Russian)

[27] T. Miwa, M. Jimbo, and E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[28] V. B. Berestetsky, E. M. Lifshits, and L. P. Pitaevsky, Theoretical Physics. Quantum Electrodynamics, v. IV, Fizmatlit, M., 2002 (in Russian) | MR

[29] M.V.Neshchadim, “B$\ddot{a}$cklund transformations for the one-dimensional Schr$\ddot{o}$dinger Equation”, Journal of Applied and Industrial Mathematics, 15:2 (2021), 307–314 | DOI | DOI | MR | Zbl

[30] S. P. Finikov, Cartan Method of Exterior Forms, GIITL, M.–L., 1948 (in Russian) | MR

[31] J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, CRC Press, New York, 1978 | MR | MR

[32] M. V. Neshchadim and A. P. Chupakhin, “Partially invariant solutions of the cubic Schrodinger equation”, Vestn. UdGU, 2008, no. 3, 35–41 (in Russian)

[33] Anikonov Yu. E., Neshchadim M. V., “Algebraic-Analytic Methods for Constructing Solutions to Differential Equations and Inverse Problems”, J. Math. Sci., 215:4 (2016), 444–459 | DOI | MR

[34] Anikonov Yu. E., Neshchadim M. V., “Representations for the solutions and coefficients of second-order differential equations”, J. Appl. Ind. Math., 7:1 (2013), 1–7 | DOI | MR

[35] Yu. E. Anikonov and M. V. Neshchadim, “Representations for the solutions and coefficients of evolution equations”, J. Appl. Ind. Math., 7:3 (2013), 326–334 | DOI | MR | Zbl

[36] M. V. Neshchadim, “Inverse problem of consistency theory and functionally invariant solutions of the wave equation in two-dimensional space”, Vestn. YuUrGU. Ser. Mat. Model. Program., 2012, no. 14, 99–107 (in Russian)