Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a7, author = {M. V. Neschchadim and A. A. Simonov}, title = {Backlund transformations of the relativistic {Schrodinger} equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {109--124}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a7/} }
TY - JOUR AU - M. V. Neschchadim AU - A. A. Simonov TI - Backlund transformations of the relativistic Schrodinger equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 109 EP - 124 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a7/ LA - ru ID - SJIM_2023_26_4_a7 ER -
M. V. Neschchadim; A. A. Simonov. Backlund transformations of the relativistic Schrodinger equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 109-124. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a7/
[1] L. V. Ovsyannikov, Group Analysis of Differential Equations, Nauka, M., 1978 (in Russian) | MR
[2] N. Kh. Ibragimov, Transformation Groups in Mathematical Physics, Nauka, M., 1983 (in Russian) | MR
[3] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York–Berlin–Heidelberg–Tokyo, 1986 | Zbl
[4] A. M. Vinogradov, Symmetries and Conservation Laws of Equations of Mathematical Physics, Faktorial, M., 1997 (in Russian)
[5] A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, The differential Constraint Method and Application in Gas Dynamics, Nauka, Novosibirsk, 1984 (in Russian) | MR
[6] N. Kh. Ibragimov and A. B. Shabat, “Evolution equations with a nontrivial Lie–Backlund group”, Funkts. Anal. Pril., 14:1 (1980), 25–36 (in Russian) | MR | Zbl
[7] N. Kh. Ibragimov and A. B. Shabat, “On infinite Lie–Backlund algebras”, Funkts. Anal. Pril., 14:4 (1980), 79–80 (in Russian) | MR | Zbl
[8] A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Introduction to the Geometry of Nonlinear Differential Equations, Nauka, M., 1983 (in Russian)
[9] A. M. Vinogradov, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, MTsNMO, M., 2021 (in Russian)
[10] Miura R. M., Backlund transformations, Lecture Notes in Mathematics, 515, Springer, Heidelberg, 1976 | DOI | MR | Zbl
[11] V. V. Zharinov, “On Backlund correspondences”, Math. USSR-Sb., 64:1 (1989), 277–293
[12] V. V. Zharinov, “Backlund correspondences for evolution equations in a multidimensional space”, Theor. Math. Phys., 147:1 (2006), 449–459 | DOI | Zbl
[13] M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | MR | Zbl
[14] O. V. Kaptsov, Methods for Integrating Partial Differential Equations, Fizmatlit, M., 2009 (in Russian)
[15] Yu. E. Anikonov and M. V. Neshchadim, “Generalized Cole–Hopf transformation”, J. Appl. Ind. Math., 12:3 (2018), 409–416 | DOI | DOI | MR | Zbl
[16] Yu. E. Anikonov and M. V. Neshchadim, “The method of differential relations and nonlinear inverse problems”, Sib. Zh. Ind. Mat., 18:2 (2015), 36–47 (in Russian) | MR | Zbl
[17] I. M. Gel'fand and O. V. Lokutsievskii, “The “sweep” method for solving difference equations”, Introduction to the Theory of Difference Schemes, 1962, 283–309 (in Russian)
[18] G. V. Akkuratov and V. I. Dmitriev, “Method for calculating the field of steady elastic vibrations in a layered medium”, U.S.S.R. Comput. Math. Math. Phys., 24:1 (1984), 166–176 | DOI | MR | Zbl | Zbl
[19] A. G. Fat'yanov and B. G. Mikhailenko, “Method for calculating unsteady wave fields in inelastic layered inhomogeneous media”, Dokl. Akad. Nauk SSSR, 301:4 (1988), 834–839 (in Russian)
[20] A. L. Karchevsky, “Analytical solution of Maxwell's equations in the frequency domain for horizontally layered anisotropic media”, Geol. Geophys., 48:8 (2007), 889–898 (in Russian)
[21] A. L. Karchevsky, “Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types”, J. Appl. Industrial. Math., 14:4 (2020), 648–665 | DOI | MR | Zbl
[22] Konopelchenko B. G., “The group structure of Backlund transformations”, Phys. Lett. A, 74:3–4 (1979), 189–192 | DOI | MR
[23] Sasaki R., “Canonical structure of Backlund transformations”, Phys. Lett. A, 78:5–6 (1980), 7–10 | DOI | MR
[24] Konopelchenko B. G., “Elementary Backlund transformations, nonlinear superposition principle and solution of the integrable equations”, Phys. Lett. A, 87:9 (1982), 445–448 | DOI | MR
[25] Kuznetsov V. B., Sklyanin E. K., “On Backlund transformations for many-body systems”, J. Physics A, 31:9 (1998), 2241–2251 | DOI | MR | Zbl
[26] N. M. Belousov, “Backlund transformation for the nonlinear Schrodinger equation”, Zap. Nauchn. Semin. POMI, 494, 2020, 6–22 (in Russian)
[27] T. Miwa, M. Jimbo, and E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[28] V. B. Berestetsky, E. M. Lifshits, and L. P. Pitaevsky, Theoretical Physics. Quantum Electrodynamics, v. IV, Fizmatlit, M., 2002 (in Russian) | MR
[29] M.V.Neshchadim, “B$\ddot{a}$cklund transformations for the one-dimensional Schr$\ddot{o}$dinger Equation”, Journal of Applied and Industrial Mathematics, 15:2 (2021), 307–314 | DOI | DOI | MR | Zbl
[30] S. P. Finikov, Cartan Method of Exterior Forms, GIITL, M.–L., 1948 (in Russian) | MR
[31] J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, CRC Press, New York, 1978 | MR | MR
[32] M. V. Neshchadim and A. P. Chupakhin, “Partially invariant solutions of the cubic Schrodinger equation”, Vestn. UdGU, 2008, no. 3, 35–41 (in Russian)
[33] Anikonov Yu. E., Neshchadim M. V., “Algebraic-Analytic Methods for Constructing Solutions to Differential Equations and Inverse Problems”, J. Math. Sci., 215:4 (2016), 444–459 | DOI | MR
[34] Anikonov Yu. E., Neshchadim M. V., “Representations for the solutions and coefficients of second-order differential equations”, J. Appl. Ind. Math., 7:1 (2013), 1–7 | DOI | MR
[35] Yu. E. Anikonov and M. V. Neshchadim, “Representations for the solutions and coefficients of evolution equations”, J. Appl. Ind. Math., 7:3 (2013), 326–334 | DOI | MR | Zbl
[36] M. V. Neshchadim, “Inverse problem of consistency theory and functionally invariant solutions of the wave equation in two-dimensional space”, Vestn. YuUrGU. Ser. Mat. Model. Program., 2012, no. 14, 99–107 (in Russian)