Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a6, author = {A. Yu. Morozov and D. L. Reviznikov}, title = {Algorithms for the numerical solution of fractional differential equations with interval parameters}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {93--108}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a6/} }
TY - JOUR AU - A. Yu. Morozov AU - D. L. Reviznikov TI - Algorithms for the numerical solution of fractional differential equations with interval parameters JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 93 EP - 108 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a6/ LA - ru ID - SJIM_2023_26_4_a6 ER -
%0 Journal Article %A A. Yu. Morozov %A D. L. Reviznikov %T Algorithms for the numerical solution of fractional differential equations with interval parameters %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 93-108 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a6/ %G ru %F SJIM_2023_26_4_a6
A. Yu. Morozov; D. L. Reviznikov. Algorithms for the numerical solution of fractional differential equations with interval parameters. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 93-108. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a6/
[1] Samko S.G., Kilbas A.A., Marichev O.I., Fractional integrals and derivatives and some of their applications, Nauka i tekhnika, Minsk, 1987 (in Russian)
[2] Nahushev A.M., Fractional calculus and its application, Fizmatlit, M., 2003 (in Russian)
[3] Goloviznin V.M., Kiselev V.P., Korotkin I.A., YUrkov YU.I., Some Features of Computational Algorithms for Fractional Diffusion Equations, IBRAE-2002-01, Nuclear Safety Institute, Russia Academy of Sciences, M., 2002
[4] Meerschaert M. M., Tadjeran C., “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56:1 (2006), 80–90 | DOI | MR | Zbl
[5] Zhang Y., Benson D. A., Meerschaert M. M., LaBolle E. M., “Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the MADE-site data”, Water Resour. Res., 43 (2007), W05439
[6] Moroz L.I., Maslovskaya A.G., “Fractional-Differential Model of the Process of Thermal Conduction of Ferroelectric Materials under Conditions of Intense Heating”, Mat. Mat. Model., 2 (2019), 29–47 (in Russian)
[7] Maslovskaya A. G., Moroz L. I., Chebotarev A. Yu., Kovtanyuk A. E., “Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105524 | DOI | MR | Zbl
[8] Moroz L.I., Maslovskaya A.G., “Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme”, Mathematical Models and Computer Simulations, 13:3 (2021), 492–501 | DOI | DOI | MR | Zbl
[9] Reviznikov D.L., Slastushenskij YU.V., “Numerical simulation of anomalous diffusion of billiard gas in a polygonal channel”, Mat. Model., 25:5 (2013), 3–14 (in Russian) | Zbl
[10] Tverdyi D., Parovik R., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal Fract., 6:3 (2022), 163 | DOI
[11] Zaky M. A., Van Bockstal K., Taha T. R., Suragan D., Hendy A. S., “An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion-reaction equations with fixed delay”, J. Comput. Appl. Math., 420 (2023), 114832 | DOI | MR | Zbl
[12] Moore R., Interval analysis, Prentice-Hall, N. Y., 1966 | MR | Zbl
[13] Moore R. E., Kearfott R. B., Cloud M. J., Introduction to Interval Analysis, SIAM, Philadelphia, 2009 | MR | Zbl
[14] SHaryj S.P., Finite-Dimensional Interval Analysis, XYZ, Novosibirsk, 2019 (in Russian)
[15] Dobronec B.S., Interval mathematics, Krasnoyarskij gosudarstvennyj universitet, Krasnoyarsk, 2007 (in Russian)
[16] Morozov A.Y., Reviznikov D.L., “Adaptive Interpolation Algorithm Based on a kd-Tree for Numerical Integration of Systems of Ordinary Differential Equations with Interval Initial Conditions”, Differential Equations, 54:7 (2018), 945–956 | DOI | DOI | MR | MR | Zbl
[17] Morozov A.Y., Zhuravlev A.A., Reviznikov D.L., “Analysis and Optimization of an Adaptive Interpolation Algorithm for the Numerical Solution of a System of Ordinary Differential Equations with Interval Parameters”, Differential Equations, 56:7 (2020), 935–949 | DOI | DOI | MR | MR | Zbl
[18] Morozov A. Yu., Zhuravlev A. A., Reviznikov D. L., “Sparse Grid Adaptive Interpolation in Problems of Modeling Dynamic Systems with Interval Parameters”, Mathematics, 9 (2021), 298 | DOI | MR
[19] Gidaspov V.Yu., Morozov A.Yu., Reviznikov D.L., “Adaptive Interpolation Algorithm Using TT-Decomposition for Modeling Dynamical Systems with Interval Parameters”, Computational Mathematics and Mathematical Physics, 61:9 (2021), 1387–1400 | DOI | DOI | MR | Zbl
[20] Morozov A.Yu., Reviznikov D.L., “Adaptive Interpolation Algorithm on Sparse Meshes for Numerical Integration of Systems of Ordinary Differential Equations with Interval Uncertainties”, Differential Equations, 57:7 (2021), 947–958 | DOI | DOI | MR | MR | Zbl
[21] Morozov A. Yu., Reviznikov D. L., “Interval approach to solving parametric identification problems for dynamical systems”, Differential Equations, 58:7 (2022), 952–965 | DOI | DOI | MR | Zbl
[22] A. Yu. Morozov and D. L. Reviznikov, “Sliding window algorithm for parametric identification of dynamical systems with rectangular and ellipsoid parameter uncertainty domains”, Differ. Equations, 59:6 (2023), 833–846 | DOI | DOI | MR | Zbl
[23] Eijgenraam P., The Solution of Initial Value Problems Using Interval Arithmetic, Mathematical Centre Tracts, 144, Mathematisch Centrum, Amsterdam, 1981 | MR | Zbl
[24] Lohner R. J., “Enclosing the solutions of ordinary initial and boundary value problems”, Comput. Arith. Sci. Comput. Program. Lang, 1987, 255–286 | MR
[25] CHernous'ko F.L., Estimation of phase states of dynamical systems. Ellipsoid method, Nauka, M., 1988 (in Russian)
[26] Makino K., Berz M., “Models and Their Applications”, Numer. Softw. Verificat. 2017: Conference (Heidelberg, Germany, July 22-23, 2017), Springer International Publishing AG, 2017, 3–13 | DOI
[27] Nataraj P. S. V., Sondur S., “The Extrapolated Taylor Model”, Reliab. Comput., 15:3 (2011), 251–278 | MR
[28] Rogalev A.N., “Guaranteed methods for solving systems of ordinary differential equations based on the transformation of symbolic formulas”, Vychisl. Tekhnol., 8:5 (2003), 102–116 (in Russian) | Zbl
[29] Fu C., Ren X., Yang Y.-F., Lu K., Qin W., “Steady-state response analysis of cracked rotors with uncertain but bounded parameters using a polynomial surrogate method”, Commun. Nonlinear Sci. Numer. Simul., 68 (2019), 240–256 | DOI | MR | Zbl
[30] Fu C., Xu Y., Yang Y., Lu K., Gu F., Ball A., “Response analysis of an accelerating unbalanced rotating system with both random and interval variables”, J. Sound Vib., 466 (2020), 115047 | DOI
[31] Xiao N., Fedele F., Muhanna R. L., “Inverse Problems Under Uncertainties — An Interval Solution for the Beam Finite Element”, Proc. 11th Internat. Conf. Struct. Safety Reliab., 2013 | DOI
[32] Petrikevich YA.I., Structural-parametric identification of dynamical objects by interval initial data, Cand. Sci. (Eng.) Dissertation, Kemerov. State Univ., Kemerovo, 2006 (in Russian)
[33] Diligenskaya A.N., Samokish A.V., “Parametric identification in inverse problems of heat conduction under conditions of interval uncertainty based on neural networks”, Vestn. Samarsk. Gos. Tekh. Univ., 28:4(68) (2020), 6–18 (in Russian)
[34] Petuhov A.A., Reviznikov D.L., “Algorithms for numerical solutions of fractional differential equations”, Vestn. MAI, 16:6 (2009), 228–243 (in Russian)
[35] Gill Ph., Murray W., Wright M., Practical Optimization, Academic Press, London-New York, 1981 | MR | Zbl
[36] Shary S. P., “Randomized algorithms in interval global optimization”, Numer. Anal. Appl., 1 (2008), 376–389 | DOI
[37] Shary S. P., “A Surprising Approach in Interval Global Optimization”, Reliab. Comput., 7:6 (2001), 497–505 | DOI | MR | Zbl