Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 32-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The evolution of the wave pattern in a multimodulus elastic half-space with a boundary moving in nonstationary uniaxial piecewise linear “tension — compression — stop” mode is studied. The solution of the boundary value problem includes all cases of interaction between plane one-dimensional strain waves, including reflected weak-intensity fronts. A number of new features of one-dimensional elastic deformation dynamics in a multimodulus medium are revealed, some of which (e. g., the appearance of a reflected shock wave at a distance from the loaded boundary, cyclic transitions of a narrow moving zone from a compressed to rigid state and back, and a stepwise decrease in the tensile strain level in the near-boundary zone after the boundary is stopped) can be obtained with a given boundary loading only taking into account reflection effects.
Keywords: multimodulus elasticity, unsteady deformation, piecewise linear boundary condition, forced stopping, strong rupture, collision of strain waves, reflected shock wave.
Mots-clés : uniaxial tension-compression
@article{SJIM_2023_26_4_a2,
     author = {O. V. Dudko and A. A. Lapteva and V. E. Ragozina},
     title = {Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {32--48},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/}
}
TY  - JOUR
AU  - O. V. Dudko
AU  - A. A. Lapteva
AU  - V. E. Ragozina
TI  - Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 32
EP  - 48
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/
LA  - ru
ID  - SJIM_2023_26_4_a2
ER  - 
%0 Journal Article
%A O. V. Dudko
%A A. A. Lapteva
%A V. E. Ragozina
%T Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 32-48
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/
%G ru
%F SJIM_2023_26_4_a2
O. V. Dudko; A. A. Lapteva; V. E. Ragozina. Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 32-48. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/

[1] I. V. Baklashov and B. A. Kartozija, Mechanics of Rocks, Nedra, M., 1975 (in Russian)

[2] D. E. Bessonov, Yu. P. Zezin, and E. V. Lomakin, “Multimodulus behevior of the grained composites on the base of unsaturated polyetheres”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 9:4(2) (2009), 9–13 (in Russian) | DOI

[3] Lomakin E. V., Fedulov B. N., “Nonlinear anisotropic elasticity for laminate composites”, Meccanica, 50:6 (2015), 1527–1535 | DOI | MR | Zbl

[4] Makeev A., He Y., Carpentier P., Shonkwiler B., “A method for measurement of multiple constitutive properties for composite materials”, Composites Part A, 43:12 (2012), 2199–2210 | DOI

[5] A. M. Zhukov, “Moduli of elasticity of materials in extension and compression”, Journal of Applied Mechanics and Technical Physics, 1985, no. 26, 568–571 | DOI

[6] Katz J. L., Spencer P., Wang Y., Misra A., Marangos O., Friis L., “On the anisotropic elastic properties of woods”, J. Mater. Sci., 43 (2008), 139–145 | DOI

[7] Li S., Demirci E., Silberschmidt V. V., “Variability and anisotropy of mechanical behavior of cortical bone in tension and compression”, J. Mech. Behav. Biomed. Mater., 21 (2013), 109–120 | DOI

[8] V. D. Kupradze, T. G. Gegelia, M. O. Bashelejshvili, and T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Publishing Co., New York, 1979 | MR | MR | Zbl

[9] E. V. Lomakin and Yu. N. Rabotnov, “A theory of elasticity for an isotropic body with different moduli in tension and compression”, Mechanics of Solids, 13:6 (1978), 25–30 | MR

[10] S. A. Ambartsumian, Theory of elasticity for materials with variable moduli, Nauka, M., 1982 (in Russian)

[11] I. Yu. Tsvelodub, “Multimodulus elasticity theory”, Journal of Applied Mechanics and Technical Physics, 2008, no. 49, 129–135 | DOI | MR | Zbl

[12] V. A. Lyakhovsky and V. P. Myasnikov, “On the behavior of elastic cracked solid”, Izvestiya Academii Nauk SSSR. Fizika Zemli, 1984, no. 10, 71–75 (in Russian) | MR

[13] V. P. Miasnikov and A. I. Oleinikov, Fundamentals of Mechanics of Heterogeneous-Resisting Media, Dal'nauka, Vladivostok, 2007 (in Russian)

[14] Sadovskaya O. V., Sadovskii V. M., “The theory of finite strains of a granular material”, J. Appl. Math. Mech., 71 (2007), 93–110 | DOI | MR | Zbl

[15] Sadovskii V. M., Sadovskaya O. V., Petrakov I. E., “On the theory of constitutive equations for composites with different resistance in compression and tension”, Compos. Struct., 268 (2021), 113921 | DOI

[16] V. E. Nazarov, “Elastic waves in media with bimodular nonlinearity taking into account the effects of reflection from shock fronts”, Technical Physics, 67:14 (2022), 2261–2269 | DOI | DOI

[17] Gavrilov S. N., Herman G. C., “Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading”, J. Sound Vibr., 331:40 (2012), 4464–4480 | DOI

[18] O. V. Dudko, A. A. Lapteva, and K. T. Semyonov, “About distribution of flat one-dimensional waves and their interaction with barrier in the media differently reacting to a stretching and compression”, Far Eastern Mathematical Journal, 6:1–2 (2005), 94–105 (in Russian)

[19] O. V. Dudko, A. A. Lapteva, and V. E. Ragozina, “Nonstationary 1D dynamics problems for heteromodular elasticity with piecewise-linear approximation of boundary conditions”, PNRPU Mechanics Bulletin, 2019, no. 4, 37–47 (in Russian) | DOI

[20] O. V. Dudko, A. A. Lapteva, and V. E. Ragozina, “Evolution of the wave pattern for piecewise linear uniaxial tension and compression of a heteromodular elastic bar”, Journal of Applied and Industrial Mathematics, 16:4 (2022), 645–658 | DOI | DOI | MR

[21] Ali H. Nayfeh, Perturbation Methods, John Wiley Sons, Inc, 1973 | MR | Zbl

[22] Kuznetsova M., Khludyakov M., Sadovskii V., “Wave propagation in continuous bimodular media”, Mech. Adv. Mater. Struct., 2021, 1–16 | DOI

[23] Maslov V. P., Mosolov P. P., “General theory of the solutions of the equations of motion of an elastic medium of different moduli”, J. Appl. Math. Mech., 49:3 (1985), 322–336 | DOI | MR | Zbl

[24] A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC Press, 1995 | MR | Zbl

[25] Igor S. Grigoriev, Evgenii Z. Meilikhov (eds.), Handbook of Physical Quantities, CRC Press, 1997

[26] O. V. Dudko and V. E. Ragozina, “On the motion of shock waves at a constant speed in multimodulus elastic media”, Mechanics of Solids, 53:1 (2018), 111–119 | DOI | MR