Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a2, author = {O. V. Dudko and A. A. Lapteva and V. E. Ragozina}, title = {Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {32--48}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/} }
TY - JOUR AU - O. V. Dudko AU - A. A. Lapteva AU - V. E. Ragozina TI - Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 32 EP - 48 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/ LA - ru ID - SJIM_2023_26_4_a2 ER -
%0 Journal Article %A O. V. Dudko %A A. A. Lapteva %A V. E. Ragozina %T Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 32-48 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/ %G ru %F SJIM_2023_26_4_a2
O. V. Dudko; A. A. Lapteva; V. E. Ragozina. Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 32-48. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a2/
[1] I. V. Baklashov and B. A. Kartozija, Mechanics of Rocks, Nedra, M., 1975 (in Russian)
[2] D. E. Bessonov, Yu. P. Zezin, and E. V. Lomakin, “Multimodulus behevior of the grained composites on the base of unsaturated polyetheres”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 9:4(2) (2009), 9–13 (in Russian) | DOI
[3] Lomakin E. V., Fedulov B. N., “Nonlinear anisotropic elasticity for laminate composites”, Meccanica, 50:6 (2015), 1527–1535 | DOI | MR | Zbl
[4] Makeev A., He Y., Carpentier P., Shonkwiler B., “A method for measurement of multiple constitutive properties for composite materials”, Composites Part A, 43:12 (2012), 2199–2210 | DOI
[5] A. M. Zhukov, “Moduli of elasticity of materials in extension and compression”, Journal of Applied Mechanics and Technical Physics, 1985, no. 26, 568–571 | DOI
[6] Katz J. L., Spencer P., Wang Y., Misra A., Marangos O., Friis L., “On the anisotropic elastic properties of woods”, J. Mater. Sci., 43 (2008), 139–145 | DOI
[7] Li S., Demirci E., Silberschmidt V. V., “Variability and anisotropy of mechanical behavior of cortical bone in tension and compression”, J. Mech. Behav. Biomed. Mater., 21 (2013), 109–120 | DOI
[8] V. D. Kupradze, T. G. Gegelia, M. O. Bashelejshvili, and T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Publishing Co., New York, 1979 | MR | MR | Zbl
[9] E. V. Lomakin and Yu. N. Rabotnov, “A theory of elasticity for an isotropic body with different moduli in tension and compression”, Mechanics of Solids, 13:6 (1978), 25–30 | MR
[10] S. A. Ambartsumian, Theory of elasticity for materials with variable moduli, Nauka, M., 1982 (in Russian)
[11] I. Yu. Tsvelodub, “Multimodulus elasticity theory”, Journal of Applied Mechanics and Technical Physics, 2008, no. 49, 129–135 | DOI | MR | Zbl
[12] V. A. Lyakhovsky and V. P. Myasnikov, “On the behavior of elastic cracked solid”, Izvestiya Academii Nauk SSSR. Fizika Zemli, 1984, no. 10, 71–75 (in Russian) | MR
[13] V. P. Miasnikov and A. I. Oleinikov, Fundamentals of Mechanics of Heterogeneous-Resisting Media, Dal'nauka, Vladivostok, 2007 (in Russian)
[14] Sadovskaya O. V., Sadovskii V. M., “The theory of finite strains of a granular material”, J. Appl. Math. Mech., 71 (2007), 93–110 | DOI | MR | Zbl
[15] Sadovskii V. M., Sadovskaya O. V., Petrakov I. E., “On the theory of constitutive equations for composites with different resistance in compression and tension”, Compos. Struct., 268 (2021), 113921 | DOI
[16] V. E. Nazarov, “Elastic waves in media with bimodular nonlinearity taking into account the effects of reflection from shock fronts”, Technical Physics, 67:14 (2022), 2261–2269 | DOI | DOI
[17] Gavrilov S. N., Herman G. C., “Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading”, J. Sound Vibr., 331:40 (2012), 4464–4480 | DOI
[18] O. V. Dudko, A. A. Lapteva, and K. T. Semyonov, “About distribution of flat one-dimensional waves and their interaction with barrier in the media differently reacting to a stretching and compression”, Far Eastern Mathematical Journal, 6:1–2 (2005), 94–105 (in Russian)
[19] O. V. Dudko, A. A. Lapteva, and V. E. Ragozina, “Nonstationary 1D dynamics problems for heteromodular elasticity with piecewise-linear approximation of boundary conditions”, PNRPU Mechanics Bulletin, 2019, no. 4, 37–47 (in Russian) | DOI
[20] O. V. Dudko, A. A. Lapteva, and V. E. Ragozina, “Evolution of the wave pattern for piecewise linear uniaxial tension and compression of a heteromodular elastic bar”, Journal of Applied and Industrial Mathematics, 16:4 (2022), 645–658 | DOI | DOI | MR
[21] Ali H. Nayfeh, Perturbation Methods, John Wiley Sons, Inc, 1973 | MR | Zbl
[22] Kuznetsova M., Khludyakov M., Sadovskii V., “Wave propagation in continuous bimodular media”, Mech. Adv. Mater. Struct., 2021, 1–16 | DOI
[23] Maslov V. P., Mosolov P. P., “General theory of the solutions of the equations of motion of an elastic medium of different moduli”, J. Appl. Math. Mech., 49:3 (1985), 322–336 | DOI | MR | Zbl
[24] A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC Press, 1995 | MR | Zbl
[25] Igor S. Grigoriev, Evgenii Z. Meilikhov (eds.), Handbook of Physical Quantities, CRC Press, 1997
[26] O. V. Dudko and V. E. Ragozina, “On the motion of shock waves at a constant speed in multimodulus elastic media”, Mechanics of Solids, 53:1 (2018), 111–119 | DOI | MR