Analysis and numerical simulation of the initial-boundary value problem for quasilinear equations of complex heat transfer
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 180-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial-boundary value problem for quasilinear equations of complex heat transfer that model the process of endovenous laser ablation. A priori estimates for the solution are obtained. Results on the global unique solvability of the problem are presented. An algorithm for finding a solution of the initial-boundary value problem is proposed. The efficiency of the algorithm is illustrated by numerical examples. The influence of internal thermal radiation on the behavior of temperature fields is evaluated.
Keywords: quasilinear equations of complex heat transfer, numerical simulation.
Mots-clés : endovenous laser ablation, nonlocal unique solvability
@article{SJIM_2023_26_4_a11,
     author = {A. Yu. Chebotarev and N. M. Park and A. E. Kovtanyuk},
     title = {Analysis and numerical simulation of the initial-boundary value problem for quasilinear equations of complex heat transfer},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {180--193},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a11/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
AU  - N. M. Park
AU  - A. E. Kovtanyuk
TI  - Analysis and numerical simulation of the initial-boundary value problem for quasilinear equations of complex heat transfer
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 180
EP  - 193
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a11/
LA  - ru
ID  - SJIM_2023_26_4_a11
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%A N. M. Park
%A A. E. Kovtanyuk
%T Analysis and numerical simulation of the initial-boundary value problem for quasilinear equations of complex heat transfer
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 180-193
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a11/
%G ru
%F SJIM_2023_26_4_a11
A. Yu. Chebotarev; N. M. Park; A. E. Kovtanyuk. Analysis and numerical simulation of the initial-boundary value problem for quasilinear equations of complex heat transfer. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 180-193. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a11/

[1] Beale R. J., Mavor A. I. D., Gough M. J., “Minimally invasive treatment for varicose veins: a review of endovenous laser treatment and radiofrequency ablation”, Int. J. Low. Extrem. Wounds, 3:4 (2004), 188–197 | DOI

[2] Morrison N., “Saphenous ablation: what are the choices, laser or RF energyr”, Semin. Vasc. Surg., 18:1 (2005), 15–18 | DOI | MR

[3] Mordon S., Wassmer B., Zemmouri J., “Mathematical modeling of endovenous laser treatment (EVLT)”, Biomed. Eng. Online, 5:1 (2006), 26 | DOI

[4] Mordon S., Wassmer B., Zemmouri J., “Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment”, Lasers Surg. Med., 39 (2007), 256–265 | DOI

[5] Malskat W. S. J., Poluektova A. A., van der Geld C. W. M., Neumann H. A. M., Weiss R. A., Bruijninckx C. M. A., van Gemert M. J. C., “Endovenous laser ablation (EVLA): A review of mechanisms, modeling outcomes, and issues for debate”, Lasers Med. Sci., 29:2 (2014), 393–403 | DOI

[6] Poluektova A. A., Malskat W. S. J., van Gemert M. J. C., Vuylsteke M. E., Bruijninckx C. M. A., Neumann H. A. M., van der Geld C. W. M., “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling”, Lasers Med. Sci., 29:2 (2014), 441–452 | DOI

[7] van Ruijven P. W., Poluektova A. A., van Gemert M. J., Neumann H. A., Nijsten T., van der Geld C. W., “Optical-thermal mathematical model for endovenous laser ablation of varicose veins”, Lasers Med. Sci., 29:2 (2014), 431–439 | DOI

[8] V. V. Tuchin, Optics of Biological Tissues. Light Scattering Methods in Medical Diagnostics, Fizmatlit, M., 2013 (in Russian)

[9] Chebotarev A. Yu., Park N. M., Mesenev P. R., Kovtanyuk A. E., “Mathematical modeling of complex heat transfer in the context of the endovenous laser ablation”, J. Phys. Conf. Ser., 2514 (2023), 012006 | DOI

[10] A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Astrakhantseva, and A. A. Sushchenko, “Optimal control of endovenous laser ablation”, Opt. Spectrosc., 128:9 (2020), 1508–1516 | DOI | DOI

[11] Kovtanyuk A. E., Chebotarev A. Yu., Astrakhantseva A. A., “Inverse extremum problem for a model of endovenous laser ablation”, J. Inverse Ill-Posed Probl., 29:3 (2021), 467–476 | DOI | MR | Zbl

[12] Chebotarev A. Y., Grenkin G. V., Kovtanyuk A. E., Botkin N. D., Hoffmann K.-H., “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions”, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 290–298 | DOI | MR | Zbl

[13] Hecht F., “New development in freefem++”, J. Numer. Math., 20:3–4 (2012), 251–265 | DOI | MR | Zbl