On the existence of solutions of nonlinear boundary value problems for nonshallow Timoshenko-type shells with free edges
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 160-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of solutions of a boundary value problem for a system of nonlinear second-order partial differential equations for the generalized displacements under given nonlinear boundary conditions that describes the equilibrium state of elastic nonshallow isotropic inhomogeneous shells of zero Gaussian curvature with free edges in the framework of the Timoshenko shear model. The research method is based on integral representations for generalized displacements containing arbitrary functions that allow the original boundary value problem to be reduced to a nonlinear operator equation for generalized displacements in the Sobolev space. The solvability of the operator equation is established using the contraction mapping principle.
Keywords: nonshallow Timoshenko-type shell of zero Gaussian curvature, nonlinear boundary value problem, partial differential equations, generalized solution, holomorphic function, operator equation, existence theorem.
@article{SJIM_2023_26_4_a10,
     author = {S. N. Timergaliev},
     title = {On the existence of solutions of nonlinear boundary value problems for nonshallow {Timoshenko-type} shells with free edges},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {160--179},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a10/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - On the existence of solutions of nonlinear boundary value problems for nonshallow Timoshenko-type shells with free edges
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 160
EP  - 179
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a10/
LA  - ru
ID  - SJIM_2023_26_4_a10
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T On the existence of solutions of nonlinear boundary value problems for nonshallow Timoshenko-type shells with free edges
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 160-179
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a10/
%G ru
%F SJIM_2023_26_4_a10
S. N. Timergaliev. On the existence of solutions of nonlinear boundary value problems for nonshallow Timoshenko-type shells with free edges. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 160-179. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a10/

[1] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Nauka, M., 1966 (in Russian) | MR

[2] A. M. Lin'kov, Complex Method of Boundary Integral Equations of Elasticity Theory, Nauka, M., 1999 (in Russian)

[3] A. I. Lurie, Theory of Elasticity, Nauka, M., 1970 (in Russian)

[4] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burguladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Nauka, M., 1976 (in Russian) | MR

[5] V. Z. Parton and P. I. Perlin, Methods of Mathematical Theory of Elasticity, Nauka, M., 1981 (in Russian) | MR

[6] S. G. Mikhlin, N. F. Morozov, and M. V. Paukshto, Integral Equations in the Theory of Elasticity, SPbGU, St. Petersburg, 1994 (in Russian)

[7] A. Ya. Aleksandrov and Yu. I. Solov'ev, Spatial Problems of the Theory of Elasticity, Nauka, M., 1978 (in Russian)

[8] G. Fichera, Existence Theorems in Elasticity, Springer, Berlin—Heidelberg—New York, 1972

[9] G. Duvaut and J.-L. Lions, Les in equations en mecanique et en physique, Dunod, Paris, 1972 | MR

[10] N. F. Morozov, Mathematical Issues in the Theory of Cracks, Nauka, M., 1984 (in Russian)

[11] A. M. Khludnev, Problems of the Theory of Elasticity in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)

[12] P. G. Ciarlet, Mathematical Theory of Elasticity, Elsevier, Amsterdam, 1988

[13] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1976), 337–403 | DOI | MR

[14] I. I. Vorovich, Mathematical Problems of the Nonlinear Theory of Shallow Shells, Nauka, M., 1989 (in Russian) | MR

[15] I. I. Vorovich and L. P. Lebedev, “The problem of the equilibrium of a plate reinforced with stiffeners”, J. Appl. Math. Mech., 63:1 (1999), 79–83 | DOI | MR | Zbl

[16] I. I. Vorovich and L. P. Lebedev, “Some issues of continuum mechanics and mathematical problems in the theory of thin-walled structures”, Int. Appl. Mech., 38:4 (2002), 387–398 | DOI | MR | MR | Zbl

[17] N. F. Morozov, Selected Two-Dimensional Problems of the Theory of Elasticity, Leningrad. Gos. Univ., L., 1978 (in Russian)

[18] M. M. Karchevsky, “Study of the solvability of the nonlinear problem of the equilibrium of a shallow free shell”, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 155:3 (2013), 105–110 (in Russian) | MR

[19] M. M. Karchevsky, “Mixed finite-element method for the nonclassical boundary problems of the theory of shallow shells”, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 158:3 (2016), 322–335 (in Russian) | MR

[20] V. F. Kirichenko and V. A. Krys'ko, “On the existence of a solution of a nonlinear coupled problem of thermoelasticity”, Differ. Uravn., 20:6 (1984), 1583–1588 (in Russian) | MR | Zbl

[21] V. F. Kirichenko, “Solvability of a connected thermoelasticity problem for three-layer shells”, Russ. Math., 56:9 (2012), 57–61 | DOI | MR | Zbl

[22] K. Z. Galimov, Fundamentals of the Nonlinear Theory of Thin Shells, Kazan. Gos. Univ., Kazan, 1975 (in Russian)

[23] K. Z. Galimov, V. N. Paimushin, and I. G. Teregulov, Foundations of the Nonlinear Theory of Shells, Fen, Kazan, 1996 (in Russian)

[24] S. A. Kabrits, E. I. Mikhailovskii, P. E. Tovstik, K. F. Chernykh, and V. A. Shamina, General Nonlinear Theory of Elastic Shells, SPbGU, St. Petersburg, 2003 (in Russian)

[25] V. A. Eremeev and L. M. Zubov, Mechanics of Elastic Shells, Nauka, M., 2008 (in Russian)

[26] S. K. Golushko and Yu. V. Nemirovskii, Direct and Inverse Problems of Mechanics of Elastic Composite Plates and Shells of Revolution, Fizmatlit, M., 2008 (in Russian)

[27] N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Generalized Timoshenko—Reissner model for a multilayer plate”, Mech. Solids, 51 (2016), 527–537 | DOI | MR

[28] V. A. Eremeev and L. P. Lebedev, “On solvability of boundary value problems for elastic micropolar shells with rigid inclusions”, Mech. Solids, 55 (2020), 852–856 | DOI | DOI

[29] S. N. Timergaliev, “On the existence of solutions of a nonlinear boundary value problem for the system of partial differential equations of the theory of Timoshenko type shallow shells with free edges”, Differ. Equations, 51:3 (2015), 373–386 | DOI | DOI | MR | Zbl

[30] S. N. Timergaliev, “On the problem of solvability of nonlinear equilibrium problems for shallow shells of Timoshenko type”, Prikl. Mat. Mekh., 82:1 (2018), 98–113 (in Russian)

[31] S. N. Timergaliev, “Method of integral equations for studying the solvability of boundary value problems for the system of nonlinear differential equations of the theory of Timoshenko type shallow inhomogeneous shells”, Differ. Equations, 55:2 (2019), 243–259 | DOI | DOI | MR | Zbl

[32] S. N. Timergaliev, “On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges”, Russ. Math., 65:4 (2021), 81–97 | DOI | DOI | MR | Zbl

[33] S. N. Timergaliev, “On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of Timoshenko type in Sobolev space”, Russ. Math., 66:4 (2022), 59–73 | DOI | DOI | MR | Zbl

[34] I. N. Vekua, Generalized Analytical Functions, Nauka, M., 1988 (in Russian)

[35] N. I. Muskhelishvili, Singular Integral Equations, Nauka, M., 1962 (in Russian) | MR

[36] F. D. Gakhov, Boundary Value Problems, Fizmatgiz, M., 1963 (in Russian)

[37] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, M., 1956 (in Russian) | MR