Temetos software platform and its applications in problems of continuum mechanics
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 16-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Temetos platform is designed to conduct computational experiments at all stages of analysis and study of continuum mechanics models. A module has been developed to study the stress-strain state of a system of bodies with allowance for inelastic strains and contact interaction. It was used to analyze a fuel element that included up to 100 fuel pellets and a shell. The platform's solvers are applied to astrophysics problems. Models of the formation of accretion disks in binary star systems that allow the interpretation of observation results are constructed.
Keywords: mathematical modelling, Temetos software platform, continuum mechanics, computational experiment.
@article{SJIM_2023_26_4_a1,
     author = {M. P. Galanin and V. V. Lukin and A. S. Rodin},
     title = {Temetos software platform and its applications in problems of continuum mechanics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {16--31},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a1/}
}
TY  - JOUR
AU  - M. P. Galanin
AU  - V. V. Lukin
AU  - A. S. Rodin
TI  - Temetos software platform and its applications in problems of continuum mechanics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 16
EP  - 31
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a1/
LA  - ru
ID  - SJIM_2023_26_4_a1
ER  - 
%0 Journal Article
%A M. P. Galanin
%A V. V. Lukin
%A A. S. Rodin
%T Temetos software platform and its applications in problems of continuum mechanics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 16-31
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a1/
%G ru
%F SJIM_2023_26_4_a1
M. P. Galanin; V. V. Lukin; A. S. Rodin. Temetos software platform and its applications in problems of continuum mechanics. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 16-31. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a1/

[1] M. P. Galanin, M. M. Gorbunov-Posadov, A. V. Ermakov, V. V. Lukin, A. S. Rodin, and K. L. Shapovalov, “A prototype of an integrated software platform to support computational experiments in complex mathematical modeling problems”, Tr. Inst. Sist. Progr. Ross. Akad. Nauk, 26:3 (2014), 51–68 | DOI

[2] M. P. Galanin, V. V. Lukin, A. S. Rodin, and D. L. Sorokin, “Application of the Temetos software platform for the development of an electromagnetic accelerator simulation environment”, Keldysh Institute preprints, 2018, 044 | DOI

[3] V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics, MGTU, M., 2008 (in Russian)

[4] Wriggers P., Computational Contact Mechanics, Springer, Heidelberg, 2006 | DOI | Zbl

[5] Hagrman D. L., Reymann G. A., A handbook of materials properties for use in the analysis of lightwater reactor fuel rod behavior, INEL, Idaho, 1979

[6] Toselli A., Widlund O., Domain Decomposition methods — Algorithms and Theory, Springer, Heidelberg, 2005 | DOI | MR | Zbl

[7] M. P. Galanin and A. S. Rodin, “Investigation and application of the domain decomposition method for simulating fuel elements”, Comput. Math. Math. Phys., 62:4 (2022), 641–657 | DOI | DOI | MR | Zbl

[8] Suzuki M., Saitou H., Light water reactor fuel analysis code FEMAXI-6 (Ver.1); Detailed structure and user's manual, JAEA, Tokai, 2006 | DOI

[9] Lukin V. V., Malanchev K. L., Shakura N. I., Postnov K. A., Chechetkin V. M., Utrobin V. P., “3D-modeling of accretion disc in eclipsing binary system V1239 Her”, Mon. Not. R. Astron. Soc., 467:3 (2017), 2934–2942 | DOI

[10] Savoury C. D. J., Littlefair S. P., Dhillon V. S., Marsh T. R., Gaensicke B. T, Copperwheat C. M., Kerry P., Hickman R. D. G., Parsons S. G., “Cataclysmic variables below the period gap: mass determinations of 14 eclipsing systems”, Mon. Not. R. Astron. Soc., 415:3 (2011), 2025–2041 | DOI

[11] Khruzina T. S., Golysheva P. Y., Katysheva N. A., Shugarov S. Y., Shakura N. I., “The Dwarf Nova V1239 Herculis In Quiescence”, Astron. Rep., 59:4 (2015), 288–312 | DOI

[12] McAllister M. J., Littlefair S. P., Baraffe I., Dhillon V. S., Marsh T. R., Bento J., Bochinski J., Bours M. C. P., Breedt E., Copperwheat C. M., Hardy L. K., Kerry P., Parsons S. G., Rostron J. W., Sahman D. I., Savoury C. D. J., Tunnicliffe R. L., “PHL 1445: an eclipsing cataclysmic variable with a substellar donor near the period minimum”, Mon. Not. R. Astron. Soc., 451:1 (2015), 114–125 | DOI

[13] Bisikalo D. V., Boyarchuk A. A., Chechetkin V. M., Kuznetsov O. A., Molteni D., “Three-dimensional numerical simulation of gaseous flow structure in semidetached binaries”, Mon. Not. R. Astron. Soc., 300:1 (1998), 39–48 | DOI

[14] L. D. Landau and E. M. Lifshitz, Theoretical Physics. Statistical Physics, v. I, Nauka, M., 1976 (in Russian)

[15] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, 1987 | DOI | MR | MR | Zbl

[16] Nagae T., Oka K., Matsuda T., Fujiwara H., Hachisu I., Boffin H. M. J., “Wind accretion in binary stars I. Mass accretion ratio”, Astron. Astrophys., 419 (2004), 335–343 | DOI

[17] P. Yu. Golysheva, Photometric studies of cataclysmic variables, Cand. Sci. (Phys.-Math.) Dissertation, Moscow State Univ., M., 2020 (in Russian)