Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a0, author = {S. A. Vasyutkin and A. P. Chupakhin}, title = {Curl equation in viscous hydrodynamics in a channel of complex geometry}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {5--15}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a0/} }
TY - JOUR AU - S. A. Vasyutkin AU - A. P. Chupakhin TI - Curl equation in viscous hydrodynamics in a channel of complex geometry JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 5 EP - 15 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a0/ LA - ru ID - SJIM_2023_26_4_a0 ER -
S. A. Vasyutkin; A. P. Chupakhin. Curl equation in viscous hydrodynamics in a channel of complex geometry. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 5-15. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a0/
[1] Milne-Thomson L. N., Theoretical Hydrodynamics, The Macmillan And Company, London, 1962 | MR
[2] Schlichting H., Gersten K., Boundary-Layer Theory, Springer, Heidelberg, 2003 | MR
[3] Kochin N. E.,Kibel I. A.,Roze N. V., Theoretical Hydromechanics, Interscience Publishers, N. Y., 1964 | MR | Zbl
[4] Shikhmurzaev Y., Sisoev G., “Spiralling liquid jets: Verifiable mathematical framework, trajectories and peristaltic waves”, J. Fluid Mech., 819 (2017), 352–400 | DOI | MR | Zbl
[5] Chan C. H., Czubak M., Disconzi M. M., “The formulation of the Navier—Stokes equations on Riemannian manifolds”, J. Geom. Phys., 121 (2017), 335–346 | DOI | MR | Zbl
[6] Marusic-Paloka E., “The effects of flexion and torsion on a fluid flow through a curved pipe”, Appl. Math. Optim., 44:3 (2001), 245–272 | DOI | MR | Zbl
[7] Chen G. Q., Osborne D., Qian Z., “The Navier—Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries”, Acta Math. Sci., 29:4 (2009), 919–948 | DOI | MR | Zbl
[8] M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, and R. Russo, “The flux problem for the Navier—Stokes equations”, Russ. Math. Surv., 69:6 (2014), 1065–1122 | DOI | DOI | MR | Zbl
[9] V. V. Pukhnachov, Symmetries in the Navier—Stokes Equations, Novosibirsk. Gos. Univ., Novosibirsk, 2022 (in Russian)
[10] A. A. Abrashkin and E. I. Yakubovich, Vortex Dynamics in the Lagrangian Description, Fizmatlit, M., 2006 (in Russian)
[11] Pommaret J. F., Differential Galois Theory, Mathematics and Its Applications: a Series of Monographs and Texts, 15, Gordon and Breach, Science Publishers, London, 1983 | MR | Zbl
[12] D. V. Parshin, R. A. Gaifutdinov, A. V. Koptyug, and A. P. Chupakhin, “Mechanics of ski sliding on snow: Current status and prospects”, J. Appl. Mech. Tech. Phys., 64:4 (2023), 693–706 | DOI
[13] A. I. Ageev and A. N. Osiptsov, “Macro- and microhydrodynamics of a viscous fluid on a superhydrophobic surface”, Colloid J., 84 (2022), 379–393 | DOI
[14] Plotnikov P. I., Sokolowski J., “Geometric Aspects of Shape Optimization”, J. Geom. Anal., 33 (2023), 206 | DOI | MR | Zbl
[15] Kobayashi S., Nomizu K., Foundations of differential geometry, Interscience Publishers, N. Y., 1963 | MR | Zbl
[16] Dall'Acqua A., Pozzi P., “A Willmore—Helfrich $L^2$-flow of curves with natural boundary conditions”, Comm. Anal. Geom., 22:4 (2014), 617–669 | DOI | MR | Zbl
[17] Dziuk G., Kuwert E., Schatzle R., “Evolution of elastic curves in $\mathbb{R}^n$: Existence and computation”, SIAM J. Math. Anal., 33:5 (2002), 1228–1245 | DOI | MR | Zbl
[18] Lin C. C., “$L^2$-flow of elastic curves with clamped boundary conditions”, J. Differ. Equ., 252:12 (2012), 6414–6428 | DOI | MR | Zbl
[19] Plotnikov P. I., Sokolowski J., “Gradient flow for Kohn-Vogelius functional”, Siberian Electron. Math. Rep., 20:1 (2023), 524–579 | MR
[20] Malkin A. Ya., Patlazhan S. A., Kulichikhin V. G., “Physicochemical phenomena leading to slip of a fluid along a solid surface”, Usp. Khim., 88:3 (2019), 319–349 | DOI
[21] Bazant M. Z., Vinogradova O. I., “Tensorial Hydrodynamic Slip”, J. Fluid Mech., 613 (2008), 125–134 | DOI | MR | Zbl