Decomposition of~singularly perturbed optimal tracking problems with~a~given reference trajectory
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 112-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the first time, the problem of optimal tracking with a given reference trajectory and an integral quadratic performance criterion in the presence of singular perturbations is considered. To analyze the singularly perturbed differential systems that arise in solving this problem, the decomposition method is used, which is based on the technique of integral manifolds of fast and slow motions. A suboptimal control is constructed, the use of which leads to a difference in the values of the minimized functional for the optimal and suboptimal controls by an amount of the order of the second power of a small parameter characterizing singular perturbations.
Keywords: tracking problem, integral manifolds
Mots-clés : singular perturbations, decomposition.
@article{SJIM_2023_26_3_a8,
     author = {V. A. Sobolev},
     title = {Decomposition of~singularly perturbed optimal tracking problems with~a~given reference trajectory},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a8/}
}
TY  - JOUR
AU  - V. A. Sobolev
TI  - Decomposition of~singularly perturbed optimal tracking problems with~a~given reference trajectory
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 112
EP  - 124
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a8/
LA  - ru
ID  - SJIM_2023_26_3_a8
ER  - 
%0 Journal Article
%A V. A. Sobolev
%T Decomposition of~singularly perturbed optimal tracking problems with~a~given reference trajectory
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 112-124
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a8/
%G ru
%F SJIM_2023_26_3_a8
V. A. Sobolev. Decomposition of~singularly perturbed optimal tracking problems with~a~given reference trajectory. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 112-124. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a8/

[1] Egupov N.D., Pupkov K.A., Methods of classical and modern theory of automatic control, v. 4, Theory of optimization of automatic control systems, Bauman Moscow State Tech. Univ. Press, M., 2004 (in Russian)

[2] Sontag E., Mathematical Control Theory: Deterministic Finite-Dimensional Systems, Springer-Verl., N. Y., 1998 | MR | Zbl

[3] Smagin V.I., Paraev Ju.I., Synthesis of tracking control systems by quadratic criteria, Tomsk State Univ. Press, Tomsk, 1996

[4] Vasil'eva A.B., Dmitriev M.G., “Singular perturbations in optimal control problems”, J. Math. Sci., 34 (1986), 1579–1629 | DOI | MR | Zbl

[5] Dmitriev M.G., Kurina G.A., “Singular perturbations in control problems”, Autom. Remote Control, 67 (2006), 1–43 | DOI | MR | Zbl

[6] Naidu D.S., “Singular perturbations and time scales in control theory and applications: An overview”, Dynam. Continuous, Discrete and Impulsive Syst. Ser. B: Appl. Algorithms, 9:2 (2002), 233–278 | DOI | MR | Zbl

[7] Kurina G.A., Kalashnikova M.A., “Singularly perturbed problems with different-time fast variables”, Avtomatika i Telemekhanika, 2022, no. 11, 3–61 (in Russian) | Zbl

[8] Kurina G, Kalashnikova M., “Justification of direct scheme for asymptotic solving three-tempo linear-quadratic control problems under weak nonlinear perturbations”, Axioms, 11:11 (2022), 647 | DOI

[9] Drǎgan V., “On the linear quadratic optimal control for systems described by singularly perturbed Itô differential equations with two fast time scales”, Axioms, 8:1 (2019), 30 | DOI

[10] Danik Y., Dmitriev M., “Padé Approximations and the SDRE technique in the design of parametric families of feedback laws”, Internat. Russian Automation Conference (RusAutoCon) (Sochi, 2022), 587–594 | DOI

[11] O'Malley R.E., Mortell M.P., Pokrovskii A., Sobolev V.A., Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005 | MR | Zbl

[12] Ghorbel F., Spong M. W., “Integral manifolds of singularly perturbed systems with application to rigid-link flexible-joint multibody systems”, Internat. J. Non-Linear Mech., 35 (2000), 133–155 | DOI | MR | Zbl

[13] Kokotović P.V., Khalil H.K., O'Reily J., Singular Perturbations Methods in Control. Analysis and Design, Acad. Press, N. Y., 1986 | MR

[14] Sobolev V.A., “Integral manifolds and decomposition of singularly perturbed system”, Syst. Control Lett., 1984, no. 5, 169–179 | DOI | MR | Zbl

[15] Voropaeva N.V., Sobolev V.A., Geometric decomposition of singularly perturbed systems, Fizmatlit, M., 2009

[16] Prasov A., Khalil H.K., “Tracking performance of a highgain observer in the presence of measurement noise”, Internat. J. Adapt. Control Signal Proc., 30:8–10 (2016), 1228–1243 | DOI | MR | Zbl

[17] Sobolev V., “Dimensional reduction of optimal tracking problems with a given reference trajectory”, 16th Internat. Conf. Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (Moscow, 2022), 1–3 | DOI | MR

[18] Kononenko L.I., Sobolev V.A., “Asymptotic decomposition of slow integral manifolds”, Sib. Math. J., 35:6 (1994), 1119–1132 | DOI | MR | Zbl

[19] O'Malley R. E. Jr., “On two methods of solution for a singularly perturbed linear state regulator problem”, SIAM Rev., 17:1 (1975), 16–37 | DOI | MR

[20] Drǎgan V., Halanay A., “Suboptimal linear controller by singular perturbation techniques”, Rev. Roumaine Sci. Techn. Ser. Electrotechn. Engrg., 21:4 (1975), 585–591 | MR