Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_3_a7, author = {N. E. Sibiryakov and D. Yu. Kochkin and O. A. Kabov and A. L. Karchevsky}, title = {Determination of the heat flux density in the region of the contact line during evaporation of a liquid into a bubble}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {95--111}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a7/} }
TY - JOUR AU - N. E. Sibiryakov AU - D. Yu. Kochkin AU - O. A. Kabov AU - A. L. Karchevsky TI - Determination of the heat flux density in the region of the contact line during evaporation of a liquid into a bubble JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 95 EP - 111 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a7/ LA - ru ID - SJIM_2023_26_3_a7 ER -
%0 Journal Article %A N. E. Sibiryakov %A D. Yu. Kochkin %A O. A. Kabov %A A. L. Karchevsky %T Determination of the heat flux density in the region of the contact line during evaporation of a liquid into a bubble %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 95-111 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a7/ %G ru %F SJIM_2023_26_3_a7
N. E. Sibiryakov; D. Yu. Kochkin; O. A. Kabov; A. L. Karchevsky. Determination of the heat flux density in the region of the contact line during evaporation of a liquid into a bubble. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 95-111. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a7/
[1] Kundan A., Plawsky J.L., Wayner P.C. Jr., “Thermophysical characteristics of a wickless heat pipe in microgravity – Constrained vapor bubble experiment”, Internat. J. Heat Mass Transfer, 78 (2014), 1105–1113 | DOI
[2] Deng Q., Braun R.J., Driscoll T.A., King-Smith P.E., “A model for the tear film and ocular surface temperature for partial blinks”, Interfacial Phenom. Heat Transfer., 1:4 (2013), 357–381 | DOI
[3] Ajaev V.S., Gatapova V.S., Kabov O.A., “Rupture of thin liquid films on structured surfaces”, Phys. Rev. E, 84 (2011), 041606 | DOI
[4] Golobic I., Petkovsek J., Baselj M., Papez A., Kenning D.B.R., “Experimental determination of transient wall temperature distributions close to growing vapor bubbles”, Heat Mass Transfer, 45 (2009), 857–866 | DOI
[5] Golobic I., Petkovsek J., Kenning D.B.R., “Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography”, Internat. J. Heat Mass Transfer., 55:4 (2012), 1385–1402 | DOI
[6] Zupančič M., Gregorčič P., Bucci M., Wang C., Aguiar G.M., Bucci M., “The wall heat flux partitioning during the pool boiling of water on thin metallic foils”, Appl. Thermal Engrg., 200 (2022), 117638 | DOI
[7] Surtaev A., Serdyukov V., Malakhov I., Safarov A., “Nucleation and bubble evolution in subcooled liquid under pulse heating”, Internat. J. Heat Mass Transfer, 169 (2021), 120911 | DOI
[8] Voulgaropoulos V., Aguiar G.M., Markides C.N., Bucci M., “Simultaneous laser-induced fluorescence, particle image velocimetry and infrared thermography for the investigation of the flow and heat transfer characteristics of nucleating vapour bubbles”, Internat. J. Heat Mass Transfer, 187 (2022), 122525 | DOI
[9] Shakerur R., McCarthy M., “Nanostructure-supported evaporation underneath a growing bubble”, ACS Appl. Mater. Interfaces, 11:13 (2019), 12441–12451 | DOI
[10] Donoghue D.B., Albadawi A., Delauré Y.M.C., Robinson A.J., Murray D.B., “Bubble impingement and the mechanisms of heat transfer”, Internat. J. Heat Mass Transfer, 71 (2014), 439–450 | DOI
[11] Carlomagno G.M., Cardone G., “Infrared thermography for convective heat transfer measurements”, Exp. Fluids, 49 (2010), 1187–1218 | DOI
[12] Surtaev A.S., Serdyukov V.S., Moiseev M.I., “Application of high-speed IR thermography to study boiling of liquids”, Instrum. Exp. Tech., 59 (2016), 615–620 | DOI
[13] Carlomagno G.M., de Luca L., Infrared Thermography in Heat Transfer: Handbook of Flow Visualization, Hemisphere, Washington, 1989
[14] Hestroni G., Rozenblit R., Yarin L.P., “A hot-foil infrared technique for studying the temperature field of a wall”, Meas. Sci. Technol., 7:10 (1996), 1418–1427 | DOI
[15] Sargent S.R., Hedlund C.R., Ligrani P.M., “An infrared thermography imaging system for convective heat transfer measurements in complex flows”, Meas. Sci. Technol., 9:12 (1998), 1974–1981 | DOI
[16] Astarita T., Cardone G., Carlomagno G.M., Meola C., “A survey of infrared thermography for convective heat transfer measurements”, Opt. Laser Technol., 32:7 (2000), 593–610 | DOI
[17] Hadamard J., “Sur les problèmes aux dérivées partielles et leur signification physique”, Princeton Univ. Bull, 1902, 49–52
[18] Hadamard J., Lectures on the Cauchy Problem in Linear Differential Equations, Yale Univ. Press, New Haven, 1923 | MR
[19] Carleman T., Les Fonctions Quasi Analytiques, Gauthier-Villars, Paris, 1926
[20] Lavrent'ev M.M., Romanov V.G., Shishatskii V.G., Ill-Posed Problems of Mathematical Physics and Analysis, Translations of Mathematical Monographs, 64, Amer. Math. Soc., Providence, 1986 | DOI | MR | MR | Zbl
[21] Lavrent'ev M.M., Some Improperly Posed Problems of Mathematical Physics, Springer-Verl, 1967 | Zbl
[22] Mergelyan S.N., “Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation”, Uspekhi Mat. Nauk, 11:5 (1956), 3–26 (in Russian) | MR | Zbl
[23] M.M. Lavrent'ev, “On the Cauchy problem for Laplace equation”, Dokl. Akad. Nauk SSSR, 102:2 (1956), 205–206 (in Russian) | Zbl
[24] Pucci C., “Sui problema di Cauchy non ben posti”, Atti Accad. Naz. Lincei, 18:5 (1955), 473–477 | MR | Zbl
[25] Lavrent'ev M.M., “On the Cauchy problem for Laplace equation”, Izv. Akad. Nauk SSSR, Ser. Mat., 20:6 (1956), 819–842 | Zbl
[26] Kozlov V. A., Maz'ya V. G., Fomin A. V., “An iterative method for solving the Cauchy problem for elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 31:1 (1991), 64–73 (in Russian) | MR
[27] Kabanikhin S.I., Karchevsky A.L., “Method for solving the Cauchy problem for an elliptic equation”, J. Inverse Ill-Posed Probl., 3:1 (1995), 21–46 | DOI | MR | Zbl
[28] Hao D.N., Lesnic D., “The Cauchy problem for Laplace's equation via the conjugate gradient method”, IMA J. Appl. Math., 65:2 (2000), 199–217 | DOI | MR | Zbl
[29] Marin L., Elliott L., Heggs P.J., Ingham D.B., Lesnic D., Wen X., “An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation”, Comput. Meth. Appl. Mech. Engrg., 192:5–6 (2003), 709–722 | DOI | MR | Zbl
[30] Marin L., Elliott L., Heggs P.J., Ingham D.B., Lesnic D., Wen X., “Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations”, Comput. Mech., 31:3–4 (2003), 367–377 | DOI | MR | Zbl
[31] Marin L., Elliott L., Heggs P.J., Ingham D.B., Lesnic D., Wen X., “BEM solution for the Cauchy problem associated with {H}elmholtz-type equations by the Landweber method”, Engrg. Anal. Bound. Element., 28:9 (2004), 1025–1034 | DOI | MR | Zbl
[32] Marin L., “A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations”, Appl. Math. Comput., 165:2 (2005), 355–374 | DOI | MR | Zbl
[33] Sorokin S. B., “An Implicit Iterative Method for Numerical Solving the Cauchy Problem for Elliptic Equations”, J. Appl. Ind. Math., 13:4 (2019), 1–14 | DOI | DOI | MR
[34] Klibanov M.V., Santosa F.A., “Computational quasi-reversibility method for Cauchy problems for Laplace's equation”, SIAM J. Appl. Math., 51:6 (1991), 1653–1675 | DOI | MR | Zbl
[35] Clason C., Klibanov M.V., “The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medim”, SIAM J. Sci. Comput., 30:1 (2007), 1–23 | DOI | MR | Zbl
[36] Bourgeois L., “A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation”, Inverse Problems, 21:3 (2005), 1087–1104 | DOI | MR | Zbl
[37] Bourgeois L., “Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation”, Inverse Problems, 22:2 (2006), 413–430 | DOI | MR | Zbl
[38] Bourgeois L., Darde J., “A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data”, Inverse Problems, 26 (2010), 095016 | DOI | MR | Zbl
[39] Bourgeois L., “About stability and regularization of ill-posed elliptic Cauchy problems: the case of $C^{1,1}$ domains”, ESAIM: M2AN, 44:4 (2010), 715–735 | DOI | MR | Zbl
[40] Kabanikhin S.I., Gasimov Y.S., Nurseitov D.B., Shishlenin M.A., Sholpanbaev B.B., Kasenov S.E., “Regularization of the continuation problem for elliptic equations”, J. Inverse Ill-Posed Probl., 21:6 (2014), 871–884 | DOI | MR
[41] Kabanikhin S.I., Shishlenin M.A., Nurseitov D.B., Nurseitova A.T., Kasenov S.E., “Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation”, J. Appl. Math., 2014 (2014), 786326 | DOI | MR | Zbl
[42] Engl H.W., Hanke M., Neubauer A., Regularization of Inverse Problems, Mathematics and Its Appl., 375, Kluwer Acad. Publ, Dordrecht, 1996 | DOI | MR | Zbl
[43] Klibanov M.V., Timonov A., Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht–Boston, 2004 | MR | Zbl
[44] Xiong X.-T., Fu C.-L., “Two approximate methods of a Cauchy problem for the Helmholtz equation”, Comput. Appl. Math., 26:2 (2007), 285–307 https://www.scielo.br/j/cam/a/TxPV5dhMznShZKZJhv6V5YH/?format=pdf&lang=en'>https://www.scielo.br/j/cam/a/TxPV5dhMznShZKZJhv6V5YH/?format=pdfamp;lang=en'
[45] Qin H.H., Wen D.W., “Tikhonov type regularization method for the Cauchy problem of the modified Helmholtz equation”, Appl. Math. Comput., 203:5 (2009), 617–628 | DOI | MR
[46] Reginska T., Tautenhahn T., “Conditional stability estimates and regularization with applications to Cauchy problems for the Helmholtz equation”, Numer. Funct. Anal. Optim., 30:9–10 (2009), 1065–1097 | DOI | MR | Zbl
[47] Cheng J., Hon Y.C., Wei T., Yamamoto M., “Numerical computation of a Cauchy problem for Laplace's equation”, Appl. Math. Mech., 81:10 (2001), 665–674 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[48] Hon Y.C., Wei T., “Backus—Gilbert algorithm for the Cauchy problem of the Laplace equation”, Inverse Problems, 17:2 (2001), 261–271 | DOI | MR | Zbl
[49] Engl H.W., Leitao A.A., “Mann iterative regularization method for elliptic Cauchy problems”, Numer. Funct. Anal. Optim., 22:7–8 (2001), 861–884 | DOI | MR | Zbl
[50] Qian Z., Fu C.-L., Xiong X.-T., “Fourth-order modified method for the Cauchy problem for the Laplace equation”, J. Comput. Appl. Math., 192:2 (2006), 205–218 | DOI | MR | Zbl
[51] Shi R., Wei T., Qin H.H., “A fourth-order modified method for the Cauchy problem of the modified Helmholtz equation”, Numer. Math. Theor. Meth. Appl., 2:3 (2009), 326–340 | DOI | MR | Zbl
[52] Fu C.-L., Li H.-F., Qian Z., Xiong X.-T., “Fourier regularization method for solving a Cauchy problem for the Laplace equation”, Inverse Probl. Sci. Engrg., 16:2 (2008), 159–169 | DOI | MR | Zbl
[53] Yang F., “The truncation method for identifying an unknown source in the Poisson equation”, Appl. Math. Comput., 217:22 (2011), 9334–9339 | DOI | MR | Zbl
[54] Qiu C.-Y., Fu C.-L., “Wavelets and regularization of the Cauchy problem for the Laplace equation”, J. Math. Anal. Appl., 338:2 (2008), 1440–1447 | DOI | MR | Zbl
[55] Reginska T., Wakulicz A., “Wavelet moment method for the Cauchy problem for the Helmholtz equation”, J. Comput. Appl. Math., 223:1 (2009), 218–229 | DOI | MR | Zbl
[56] Leitao A., Alves M.M., “On level set type methods for elliptic Cauchy problems”, Inverse Problems, 23:5 (2007), 2207–2222 | DOI | MR | Zbl
[57] Titarenko V.N., Yagola A.G., “Cauchy problems for Laplace equation on compact sets”, Inverse Probl. Sci. Engrg., 10:3 (2002), 235–254 | DOI
[58] Karchevsky A.L., “Reformulation of an inverse problem statement that reduces computational costs”, Eurasian J. Math. Comput. Appl., 1:2 (2013), 5–20 | DOI | MR
[59] Sorokin S. B., “An economical algorithm for numerical solution of the problem of identifying the right-hand side of the poisson equation”, J. Appl. Ind. Math., 12:2 (2018), 362–368 | DOI | DOI | MR | MR | Zbl
[60] Sorokin S. B., “An efficient direct method for numerically solving the cauchy problem for laplace's equation”, Numer. Anal. Appl., 12:1 (2019), 87–103 | DOI | DOI | MR | MR
[61] Sorokin S. B., “A Direct Method for Solving the Inverse Coefficient Problem for an Elliptic Equation with Piecewise Constant Coefficients”, J. Appl. Ind. Math., 15:2 (2021), 331–342 | DOI | DOI | MR
[62] Klibanov M.V., “Carleman estimates for the regularization of ill-posed Cauchy problems”, Appl. Numer. Math., 94 (2015), 46–74 | DOI | MR | Zbl
[63] Marchuk I., Karchevsky A., Surtaev A., Kabov O., “Heat flux at the surface of metal foil heater under evaporating sessile droplets”, Internat. J. Aerosp. Engrg., 2015 (2015), 391036
[64] Karchevsky A.L., Marchuk I.V., Kabov O.A., “Calculation of the heat flux near the liquid-gas-solid contact line”, Appl. Math. Model., 40:2 (2016), 1029–1037 | DOI | Zbl
[65] Cheverda V. V., Marchuk I. V., Karchevsky A. L., Orlik E. V., Kabov O. A., “Experimental investigation of heat transfer in a rivulet on the inclined foil”, Thermophys. Aeromechanics, 23:3 (2016), 415–420 | DOI | MR
[66] Cheverda V. V., Karchevsky A. L., Marchuk I. V., Kabov O. A., “Heat flux density in the region of droplet contact line on a horizontal surface of a thin heated foil”, Thermophys. Aeromechanics, 24:5 (2017), 803–806 | DOI | MR
[67] Technical Data. ${\rm 3M}^{\rm TM}$ Fluorinert${}^{\rm TM}$ Electronic Liquid FC-72 https://multimedia.3m.com/mws/media/64892O/3m-fluorinert-electronic-liquid-fc72-en.pdf
[68] Tikhonov A.N., “On stable summation methods for Fourier series”, Doklady Akad. Nauk SSSR, 156:2 (1964), 268–271 (in Russian) | Zbl
[69] Pratt W. K., Digital Image Processing, Intersci. Publ, N. Y., 1978