Simulation of substrate cooling during evaporation of pure vapor from the surface of a thin liquid film and droplets
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 73-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical study of the process of cooling the substrate under the conditions of evaporation of pure vapor from the surface of the film and a droplet of liquid was carried out. The lattice Boltzmann method was used for modeling of such a two-phase system, taking into account the thermal conductivity of the substance and evaporation. The van der Waals equation of state was used, which describes the liquid-vapor phase transition. A new method for setting the boundary conditions on a flat surface for modeling the contact wetting angles in the lattice Boltzmann method is proposed. During evaporation and condensation, the latent heat of the phase transition was taken into account. It is shown that the process depends on the film thickness and the rate of vapor removal from its surface. The cases of forced outflow of vapor, as well as the method of vapor condensation on a cooled condenser, are considered. It is shown that the heat flux from the substrate increases sharply in the vicinity of the droplet contact lines. A comparison is made of the heat fluxes during the evaporation of a film and droplets on a substrate with different wettability.
Keywords: lattice Boltzmann method, dynamics of multiphase media, evaporation, heat flux, mesoscopic methods, computer simulation.
Mots-clés : phase transitions
@article{SJIM_2023_26_3_a5,
     author = {A. L. Kupershtokh and D. A. Medvedev and A. V. Alyanov},
     title = {Simulation of substrate cooling during evaporation of pure vapor from the surface of a thin liquid film and droplets},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {73--85},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a5/}
}
TY  - JOUR
AU  - A. L. Kupershtokh
AU  - D. A. Medvedev
AU  - A. V. Alyanov
TI  - Simulation of substrate cooling during evaporation of pure vapor from the surface of a thin liquid film and droplets
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 73
EP  - 85
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a5/
LA  - ru
ID  - SJIM_2023_26_3_a5
ER  - 
%0 Journal Article
%A A. L. Kupershtokh
%A D. A. Medvedev
%A A. V. Alyanov
%T Simulation of substrate cooling during evaporation of pure vapor from the surface of a thin liquid film and droplets
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 73-85
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a5/
%G ru
%F SJIM_2023_26_3_a5
A. L. Kupershtokh; D. A. Medvedev; A. V. Alyanov. Simulation of substrate cooling during evaporation of pure vapor from the surface of a thin liquid film and droplets. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 73-85. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a5/

[1] Hirth J.P., Pound G.M., Condensation and Evaporation, Pergamon Press, London, 1963

[2] Kupershtokh A.L., “An evaporation flux of pure vapor in the method of lattice Boltzmann equations”, J. Phys. Conf. Ser., 2057 (2021), 012070 | DOI

[3] Kupershtoh A.L., Alyanov A.V., “Isparenie i kondensaciya chistogo para na poverhnosti zhidkosti v metode reshetochnyh uravnenii Bol'cmana”, Comput. Meth. Program., 23:4 (2022), 311–327 (in Russian) | DOI

[4] Marchuk I., Karchevsky A., Surtaev A., Kabov O., “Heat flux at the surface of metal foil heater under evaporating sessile droplets”, Internat. J. Aerospace Engrg., 2015, 391036, 5 pp. | DOI

[5] Karchevsky A.L., Marchuk I.V., Kabov O.A., “Calculation of the heat flux near the liquid-gas-solid contact line”, Appl. Math. Model., 40:2 (2016), 1029–1037 | DOI | Zbl

[6] Gibbons M.J., Howe C.M., Di Marco P., Robinson A.J., “Local heat transfer to an evaporating sessile droplet in an electric field”, J. Phys. Conf. Ser., 745:3 (2016), 032066 | DOI

[7] Ajaev V.S., Kabov O.A., “Heat and mass transfer near contact lines on heated surfaces”, Internat. J. Heat Mass Transfer, 108 (2017), 918–932 | DOI

[8] Cheverda V.V., Karchevskij A.L., Marchuk I.V., Kabov O.A., “The heat flux density in the area of the contact line of the drop lying on the horizontal surface of the thin heated foil”, Thermophys. Aeromech., 24:5 (2017), 825–828 (in Russian) | MR

[9] McNamara G.R., Zanetti G., “Use of the Boltzmann equation to simulate lattice-gas automata”, Phys. Rev. Lett., 61:20 (1988), 2332–2335 | DOI

[10] Higuera F.J., Jiménez J., “Boltzmann approach to lattice gas simulations”, Europhys. Lett., 9:7 (1989), 663–668 | DOI

[11] Aidun C.K., Clausen J.R., “Lattice-Boltzmann method for complex flows”, Annu. Rev. Fluid Mech., 42 (2010), 439–472 | DOI | MR | Zbl

[12] Kupershtokh A.L., Medvedev D.A., Karpov D.I., “On equations of state in a lattice Boltzmann method”, Comput. Math. Appl., 58:5 (2009), 965–974 | DOI | MR | Zbl

[13] Kupershtokh A.L., “Simulation of flows with liquid–vapor interfaces by the lattice Boltzmann method”, Vestnik NGU. Ser. Math. Mech. Inform., 5:3 (2005), 29–42 | Zbl

[14] Bhatnagar P.L., Gross E.P., Krook M.K., “A model for collision process in gases. I. Small amplitude process in charged and neutral one-component system”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl

[15] Koelman J.M.V.A., “A simple lattice Boltzmann scheme for Navier—Stokes fluid flow”, Europhys. Lett., 15:6 (1991), 603–607 | DOI

[16] Kupershtokh A.L., “New method of incorporating a body force term into the lattice Boltzmann equation”, Proc. 5th Internat. EHD Workshop (Poitiers, 2004), 241–246

[17] Kupershtokh A.L., “Criterion of numerical instability of liquid state in LBE simulations”, Comput. Math. Appl., 59:7 (2010), 2236–2245 | DOI | MR | Zbl

[18] Qian Y.H., d'Humières D., Lallemand P., “Lattice BGK models for Navier—Stokes equation”, Europhys. Lett., 17:6 (1992), 479–484 | DOI | Zbl

[19] Qian Y.H., Chen S., “Finite size effect in lattice-BGK models”, Internat. J. Model. Phys. C, 8:4 (1997), 763–771 | DOI

[20] Kupershtokh A.L., Medvedev D.A., Gribanov I.I., “Thermal lattice Boltzmann method for multiphase flows”, Phys. Rev. E, 98:2 (2018), 023308 | DOI

[21] Ginzburg I., Adler P.M., “Boundary flow condition analysis for the three-dimensional lattice Boltzmann model”, J. Phys. II France, 4:2 (1994), 191–214 | DOI

[22] Landau L.D., Lifshic I.M., Statisticheskaya Fizika, v. I, Nauka, M., 1976 (in Russian) | MR

[23] Kupershtoh A.L., Medvedev D.A., “Perforaciya tonkih zhidkih plenok pod dejstviem neodnorodnogo elektricheskogo polya”, Prikl. Mekh. Tekhn. Fiz., 63:6 (2022), 12–20 (in Russian) | DOI | MR | Zbl

[24] Li Q., Luo K.H., Kang Q.J., Chen Q., “Contact angles in the pseudopotential lattice Boltzmann modeling of wetting”, Phys. Rev. E, 90:5 (2014), 053301 | DOI