Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_3_a3, author = {M. D. Kovalev}, title = {On~graphs and~structural formulas of~the~mechanisms theory}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {42--55}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a3/} }
M. D. Kovalev. On~graphs and~structural formulas of~the~mechanisms theory. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 42-55. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a3/
[1] Dvornikov L.T., “Experience of structural synthesis of mechanisms”, Teoriya Mekhanizmov i Mashin, 2:4 (2004), 3–17 (in Russian)
[2] Dvornikov L.T., “To prove the validity of the experience of structural synthesis of mechanisms”, Teoriya Mekhanizmov i Mashin, 4:1 (2006), 44–48 (in Russian) | MR
[3] Peisakh E.E., “To the discussion on the problem of structural synthesis of plane hinge mechanisms”, Teoriya Mekhanizmov i Mashin, 4:1 (2006), 49–54 (in Russian) | MR
[4] Dvornikov L.T., “About fundamental inaccuracies in the research of Prof. Pozhbelko V.I. on the structure of mechanisms”, Teoriya Mekhanizmov i Mashin, 14:3(31) (2016), 145–166 (in Russian)
[5] Pozhbelko V.I., Kuts E.N., “Integer structural synthesis of multi-contour lever mechanisms with complex hinges for various fields of mechanical engineering”, Izv. Vyssh. Uchebn. Zaved. Mashinostroenie, 2021, no. 6, 23–36 (in Russian) | DOI
[6] Peisakh E.E., “About Assur groups, Baranov trusses, Grubler chains, plain hinge mechanisms and their structural synthesis”, Elektron. Zhurn. «Nauka i Obrazovanie» , MGTU, 2007, no. 4 (in Russian)
[7] Dvornikov L.T., SibGIU scientific schools. Theory of the structure of mechanical systems and the practice of its use in the synthesis of complex machines, including mining and metallurgical, Izd. Tsentr SibGIU, Novokuznetsk, 2015 (in Russian)
[8] Peisakh E.E., Nesterov V.A., Design systems for plain lever mechanisms, Mashinostroenie, M., 1988 (in Russian)
[9] Davies T.H., “An extension of Manolescu's classification of planar kinematic chains and mechanisms of mobility $M\geq 1$, using graph theory”, J. Mechanisms, 3 (1968), 87–100 | DOI
[10] Didenko E.V., Development and analysis of planar multi-contour mechanisms based on graph theory, Diss. ... kand. tekhn. nauk, M., 2019 (in Russian)
[11] Kovalev M.D., “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | MR | Zbl
[12] Kovalev M.D., “Questions of geometry of hinge devices and schemes”, Vestn. MGTU. Ser. Mashinostroenie, 2001, no. 4, 33–51 (in Russian)
[13] Kovalev M.D., Geometric questions of kinematics and statics, Lenand, M., 2019 (in Russian)
[14] Kovalev M.D., What is a hinge mechanism? And what did Kempe prove?, Itogi Nauki i Tekh. Ser. Sovremen. Mat. i Ee Prilozh. Temat. Obzory, 179, VINITI RAN, M., 2020, 16–28 (in Russian) | DOI
[15] Tay T.S., “Rigidity of multi-graphs I, linking rigid bodies in n-space”, J. Combin. Theory. Ser. B, 36 (1984), 95–112 | DOI | MR | Zbl
[16] Harary F., Graph Theory, Addison-Wesley Publ, MA, 1969 | MR | Zbl
[17] Benedetti R., Risler J., Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990 | MR | Zbl
[18] Kovalev M.D., “Configuration spaces of hinged mechanisms, and their projections”, Mat. Sbornik, 213:4 (2022), 74–99 (in Russian) | DOI | MR | Zbl
[19] Graver J., Servatius B., Servatius H., Combinatorial Rigidity, Amer. Math. Soc., Providence, 1993 | MR | Zbl
[20] Chebyshev P.L., “On parallelograms”, Trudy Vtorogo S"ezda Rus. Estestvoispytatelei. Otdel Tekh. Prakt. Mekh., 1870, 9–30 (in Russian)
[21] Levitskii N.I., Theory of mechanisms and machines, Nauka, M., 1990 (in Russian)
[22] Pollaczek-Geiringer H., “Über die Gliederung ebener Fuchwerke”, Z. Angew. Math. Mech., 7:1 (1927), 58–72 | DOI
[23] Laman G., “On graphs and rigidity of plane skeletal structures”, J. Engrg. Math., 4 (1970), 331–340 | DOI | MR | Zbl
[24] Tay T.S., “Rigidity of multi-graphs. I: Linking rigid bodies in $n$-space”, J. Combin. Theory. Ser. B, 36:1 (1984), 95–112 | DOI | MR | Zbl
[25] Handbook of Geometric Constraint Systems Principles, Taylor and Francis Group, 2019
[26] Tay T.S., “Linking ($n-2$)-dimensional panels in $n$-space II: $(n-2;2)$-frameworks and body and hinge structures”, Graphs Combin., 5:1 (1989), 245–273 | DOI | MR | Zbl