Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_3_a13, author = {M. V. Shubina}, title = {Exact traveling wave solutions of~one-dimensional models of~cancer invasion}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {179--194}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a13/} }
TY - JOUR AU - M. V. Shubina TI - Exact traveling wave solutions of~one-dimensional models of~cancer invasion JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 179 EP - 194 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a13/ LA - ru ID - SJIM_2023_26_3_a13 ER -
M. V. Shubina. Exact traveling wave solutions of~one-dimensional models of~cancer invasion. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 179-194. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a13/
[1] Folkman J., Klagsbrun M., “Angiogenic Factors”, Science, 235:4787 (1987), 442–447 | DOI
[2] Anderson A.R.A., Chaplain M.A.J., “Continuous and discrete mathematical models of tumor-induced angiogenesis”, Bull. Math. Biology, 60 (1998), 857–899 | DOI | Zbl
[3] Anderson A.R.A., Chaplain M.A.J., Newman E.L., Steele R.J.C., Thompson A.M., “Mathematical modelling of tumour invasion and metastasis”, J. Theor. Medicine, 2:2 (2000), 129–154 | DOI | Zbl
[4] Chaplain M.A.J., Lolas G., “Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity”, Amer. Institute Math. Sci., 1:3 (2006), 399–439 | MR | Zbl
[5] Enderling H., Chaplain M.A.J., “Mathematical modeling of tumor growth and treatment”, Curr. Pharm. Des., 20:30 (2014), 4934–4940 | DOI | MR
[6] Adam J.A., Bellomo N., A Survey Ofmodels for Tumour-Immune System Dynamics, Birkhüser, Boston, 1996
[7] Preziosi L., Cancer Modelling and Simulation, Chapman Hall/CRC Press, Boca Raton, 2003 | MR | Zbl
[8] Bellomo N., Chaplain M.A.J., De Angelis E., Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy, Modeling and Simulation in Science, Engineering and Technology, Birkhüser, Boston, 2008 | DOI | MR | Zbl
[9] Araujo R.P., McElwain D.L.S., “A history of the study of solid tumour growth: the contribution of mathematical modelling”, Bull. Math. Biology, 66:5 (2004), 1039–1091 | DOI | MR | Zbl
[10] Lowengrub J.S., Frieboes H.B., Jin F., Chuang Y.-L., Li X., Macklin P., Wise S.M., Cristini V., “Nonlinear modelling of cancer: bridging the gap between cells and tumours”, Nonlinearity, 23 (2010), R1–R91 | DOI | MR | Zbl
[11] Gatenby R.A., Gawlinski E.T., “A reaction-diffusion model of cancer invasion”, Cancer Res., 56:24 (1996), 5745–5753
[12] Perumpanani A.J., Sherratt J.A., Norbury J., Byrne H.M., “Biological inferences from a mathematical model for malignant invasion”, Invasion Metastasis, 16:4–5 (1996), 209–221
[13] Patlak C.S., “Random walk with persistence and external bias”, Bull. Math. Biophys., 15:3 (1953), 311–338 | DOI | MR | Zbl
[14] Keller E.F., Segel L.A., “Initiation of slime mold aggregation viewed as an instability”, J. Theor. Biology, 26:3 (1970), 399–415 | DOI | MR | Zbl
[15] Keller E.F., Segel L.A., “Model for Chemotaxis”, J. Theor. Biology, 30:2 (1971), 225–234 | DOI | Zbl
[16] Keller E.F., Segel L.A., “Traveling bands of chemotactic bacteria: a theoretical analysis”, J. Theor. Biology, 30:2 (1971), 235–248 | DOI | Zbl
[17] Painter K. J., “Mathematical models for chemotaxis and their applications in self-organisation phenomena”, J. Theor. Biology, 481 (2019), 162–182 | DOI | MR | Zbl
[18] Anderson A.R.A., “A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion”, Math. Medicine and Biology, 22:2 (2005), 163–186 | DOI | Zbl
[19] Chaplain M.A.J., Lolas G., “Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system”, Math. Models Methods Appl. Sci., 15 (2005), 1685–1734 | DOI | MR | Zbl
[20] Enderling H., Anderson A.R.A., Chaplain M.A.J., Munro A.J., Vaidya J.S., “Mathematical Modelling of Radiotherapy Strategies for Early Breast Cancer”, J. Theor. Biology, 241:1 (2006), 158–171 | DOI | MR | Zbl
[21] Andasari V., Gerisch A., Lolas G., South A.P., Chaplain M.A.J., “Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation”, J. Math. Biology, 63:1 (2010), 141–171 | DOI | MR
[22] Gerisch A., Chaplain M.A.J., “Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion”, J. Theor. Biology, 250:4 (2008), 684–704 | DOI | MR | Zbl
[23] Frieboes H.B., Zheng X., Sun C.H., Tromberg B., Gatenby R., Christini V., “An integrated computational/experimental model of tumor invasion”, Cancer Res., 66 (2006), 1597–1604 | DOI
[24] Painter K.J., “Modelling cell migration strategies in the extracellular matrix”, J. Math. Biology, 58:4–5 (2009), 511–543 | DOI | MR | Zbl
[25] Ramis-Conde I., Chaplain M.A.J., Anderson A.R.A., “Mathematical modelling of cancer cell invasion of tissue”, Math. Comput. Model., 47:5–6 (2008), 533–545 | DOI | MR | Zbl
[26] Painter K.J., Armstrong N.A., Sherratt J.A., “The impact of adhesion on cellular invasion processes in cancer and development”, J. Theor. Biology, 264 (2010), 1057–1067 | DOI | MR | Zbl
[27] Peng L., Trucu D., Lin P., Thompson A., Chaplain M.A.J., “A multiscale mathematical model of tumour invasive growth”, Bull. Math. Biology, 79:3 (2017), 389–429 | DOI | MR | Zbl
[28] Domschke P., Trucu D., Gerisch A., Chaplain M.A.J., “Structured models of cell migration incorporating molecular binding processes”, J. Math. Biology, 75:5–6 (2017), 1517–1561 | DOI | MR | Zbl
[29] Bitsouni V., Chaplain M.A.J., Eftimie R., “Mathematical modelling of cancer invasion: the multiple roles of TGF-$\beta$ pathway on tumour proliferation and cell adhesion”, Math. Models Methods Appl. Sci., 27:10 (2017), 1929 | DOI | MR | Zbl
[30] Bitsouni V., Trucu D., Chaplain M.A.J., Eftimie R., “Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion”, Math. Medicine and Biology, 35:4 (2018), 541–577 | MR | Zbl
[31] Szymanska Z., Cytowski M., Mitchell E., Macnamara C.K., Chaplain M.A.J., “Computational modelling of cancer development and growth: modelling at multiple scales and multiscale modelling”, Bull. Math. Biology, 80:5 (2017), 1366–1403 | DOI | MR
[32] Pang P.Y.H., Wang Y., “Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant”, J. Diff. Equ., 263 (2017), 1269–1292 | DOI | MR | Zbl
[33] Ke Y., Zheng J., “A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant”, Nonlinearity, 31:10 (2018), 4602 | DOI | MR | Zbl
[34] Bubba F., Pouchol C., Ferrand N., Vidal G., Almeida L., Perthame B., Sabbah M., “A chemotaxis-based explanation of spheroid formation in 3d cultures of breast cancer cells”, J. Theor. Biology, 479 (2019), 73–80 | DOI | MR
[35] Xiang T., Zheng J., “A new result for 2D boundedness of solutions to a chemotaxis-haptotaxis model with/without sub-logistic source”, Nonlinearity, 32 (2019), 4890 | DOI | MR | Zbl
[36] Tao Y., Winkler M., “Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy”, J. Diff. Equ, 268:9 (2020), 4973 | DOI | MR | Zbl
[37] Perumpanani A.J., Sherratt J.A., Norbury J., Byrne H., “A two parameter family of travelling waves with a singular barrier arising from the modelling of matrix mediated malignant invasion”, Physica. Ser. D: Nonlinear Phenomena, 126 (1999), 145–159 | DOI
[38] Marchant B.P., Norbury J., Sherratt J.A., “Travelling wave solutions to a haptotaxis-dominated model of malignant invasion”, Nonlinearity, 14:6 (2001), 1653–1671 | DOI | MR | Zbl
[39] Sherratt J., “On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion”, Math. Model. Nat. Phenom., 5:5 (2010), 64–79 | DOI | MR | Zbl
[40] Harley K., Van Heijster P., Marangell R., Pettet G.J., Wechselberger M., “Existence of traveling wave solutions for a model of tumor invasion”, J. Appl. Dynam. Syst., 13:1 (2014), 366–396 | DOI | MR | Zbl
[41] Olver P.J., Applications of Lie Groups to Differential Equations, Springer-Verl, 1986 | MR | Zbl
[42] Bateman H., Erdélyi A., Higher Transcendental Functions, v. 2, McGraw-Hill Book Company, N. Y.–Toronto–London, 1953