Exact traveling wave solutions of~one-dimensional models of~cancer invasion
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 179-194

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain exact analytical solutions of equations of continuous mathematical models of tumour growth and invasion based on the model introduced by Chaplain and Lolas for the case of one space dimension. The models consist of a system of three nonlinear reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth non-negative functions depending on the traveling wave variable and certain conditions on the model parameters.
Keywords: partial differential equation, traveling wave solutions, haptotaxis.
Mots-clés : exact solution, cancer invasion, chemotaxis
@article{SJIM_2023_26_3_a13,
     author = {M. V. Shubina},
     title = {Exact traveling wave solutions of~one-dimensional models of~cancer invasion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a13/}
}
TY  - JOUR
AU  - M. V. Shubina
TI  - Exact traveling wave solutions of~one-dimensional models of~cancer invasion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 179
EP  - 194
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a13/
LA  - ru
ID  - SJIM_2023_26_3_a13
ER  - 
%0 Journal Article
%A M. V. Shubina
%T Exact traveling wave solutions of~one-dimensional models of~cancer invasion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 179-194
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a13/
%G ru
%F SJIM_2023_26_3_a13
M. V. Shubina. Exact traveling wave solutions of~one-dimensional models of~cancer invasion. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 179-194. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a13/