On~the~equilibrium of~elastic bodies with~weakly curved junction
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 154-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is addressed to the analysis of a boundary value problem with an unknown contact area, which describes equilibrium of two-dimensional elastic bodies with a thin weakly curved junction. It is assumed that the junction exfoliates from the elastic bodies, thereby forming interfacial cracks. Nonlinear boundary conditions of the inequality form are set on the crack faces, excluding the mutual penetration. The unique solvability of the boundary value problem is established. The analysis of limit transitions in terms of the junction stiffness parameter is provided as the parameter tends to infinity and to zero, and limiting models are investigated.
Keywords: boundary value problem, nonlinear boundary conditions, elastic body, thin junction, crack.
@article{SJIM_2023_26_3_a11,
     author = {A. M. Khludnev},
     title = {On~the~equilibrium of~elastic bodies with~weakly curved junction},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {154--168},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a11/}
}
TY  - JOUR
AU  - A. M. Khludnev
TI  - On~the~equilibrium of~elastic bodies with~weakly curved junction
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 154
EP  - 168
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a11/
LA  - ru
ID  - SJIM_2023_26_3_a11
ER  - 
%0 Journal Article
%A A. M. Khludnev
%T On~the~equilibrium of~elastic bodies with~weakly curved junction
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 154-168
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a11/
%G ru
%F SJIM_2023_26_3_a11
A. M. Khludnev. On~the~equilibrium of~elastic bodies with~weakly curved junction. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 154-168. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a11/