Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_3_a11, author = {A. M. Khludnev}, title = {On~the~equilibrium of~elastic bodies with~weakly curved junction}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {154--168}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a11/} }
A. M. Khludnev. On~the~equilibrium of~elastic bodies with~weakly curved junction. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 154-168. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a11/
[1] Caillerie D., Nedelec J.C., “The effect of a thin inclusion of high rigidity in an elastic body”, Math. Meth. Appl. Sci., 2 (1980), 251–270 | DOI | MR | Zbl
[2] El Jarroudi M., “Homogenization of an elastic material reinforced with thin rigid von Karman ribbons”, Math. Mech. Solids, 24:7 (2018), 1–27 | DOI | MR
[3] Lazarev N., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66 (2015), 2025–2040 | DOI | MR | Zbl
[4] Rudoy E., “Asymptotic justification of models of plates containing inside hard thin inclusions”, Technologies, 8:4 (2020), 59 | DOI
[5] Bessoud A.-L., Krasucki F., Michaille G., “Multi-materials with strong interface: Variational modelings”, Asymptot. Anal., 61:1 (2009), 1–19 | DOI | MR | Zbl
[6] Khludnev A.M., Fankina I.V., “Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary”, Z. Angew. Math. Phys., 72:121 (2021) | DOI | MR | Zbl
[7] Lazarev N.P., Rudoy E.M., “Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies”, J. Comp. Appl. Math., 403 (2022), 113710 | DOI | MR | Zbl
[8] Lazarev N., Itou H., “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff —Love plates with a crack”, Math. Mech. Solids, 24 (2019), 3743–3752 | DOI | MR
[9] Rudoj E.M., Itou H., Lazarev N.P., “Asymptotic substantiation of models of thin inclusions in an elastic body within the framework of an antiplane shift”, Sib. Zhurn. Indust. Mat., 24:1 (2021), 103–119 (in Russian) | DOI | MR | Zbl
[10] Fankina I.V., Furtsev A.I., Rudoy E.M., Sazhenkov S.A., “Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion”, Sib. Electron. Math. Rep., 19:2 (2022), 935–948 | DOI | MR
[11] Shcherbakov V.V., “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions”, Z. Angew. Math. Phys., 68:26 (2017) | DOI | MR | Zbl
[12] Khludnev A.M., “T-shape inclusion in elastic body with a damage parameter”, J. Comp. Appl. Math., 393 (2021), 113540 | DOI | MR | Zbl
[13] Furtsev A.I., “On contact between a thin obstacle and a plate containing a thin inclusion”, J. Math. Sci., 237:4 (2019), 530–545 | DOI | MR
[14] Bellieud M., Bouchitte G., “Homogenization of a soft elastic material reinforced by fibers”, Asymptotic Anal., 32 (2002), 153–183 | MR | Zbl
[15] Fankina I.V., Furtsev A.I., Rudoy E.M., Sazhenkov S.A., “Multiscale analysis of stationary thermoelastic vibrations of a composite material”, Philos. Trans. R. Soc. Ser. A, 380 (2022), 20210354 | DOI | MR
[16] Gaudiello A., Sili A., “Limit models for thin heterogeneous structures with high contrast”, J. Differ. Equyu, 302 (2021), 37–63 | DOI | MR | Zbl
[17] Kovtunenko V.A., Leugering G., “A shape-topological control problem for nonlinear crack — defect interaction: the anti-plane variational model”, SIAM J. Control Optimyu, 54 (2016), 1329–1351 | DOI | MR | Zbl
[18] Khludnev A.M., Kovtunenko V.A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[19] Khludnev A.M., Problems of elasticity theory in non-smooth domains, Fizmatlit, M., 2010 (in Russian)
[20] Vol'mir A.S., Nonlinear dynamics of plates and shells, Nauka, M., 1972 (in Russian)
[21] Khludnev A.M., “A weakly curved inclusion in an elastic body with separation”, Mechanics of Solids, 50:5 (2015), 591–601 | DOI | MR
[22] Khludnev A.M., “Asymptotics of anisotropic weakly curved inclusions in an elastic body”, Sib. Zhurn. Indust. Mat., 20:1 (2017), 93–104 (in Russian) | DOI | Zbl
[23] Khludnev A.M., Popova T.C., “The junction problem for two weakly curved inclusions in an elastic body”, Sib. Math. J., 61:4 (2020), 743–754 | DOI | DOI | MR | Zbl
[24] Khludnev A.M., “Asymptotics of solutions for two elastic plates with thin junction”, Sib. Electron. Math. Rep., 19:2 (2022), 484–501 | DOI | MR
[25] Khludnev A.M., “On the crossing bridge between two Kirchhoff —Love plates”, Axioms, 12:2 (2023), 120 | DOI