Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_3_a10, author = {D. P. Furman and T. A. Bukharina and V. P. Golubyatnikov}, title = {The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {142--153}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a10/} }
TY - JOUR AU - D. P. Furman AU - T. A. Bukharina AU - V. P. Golubyatnikov TI - The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 142 EP - 153 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a10/ LA - ru ID - SJIM_2023_26_3_a10 ER -
%0 Journal Article %A D. P. Furman %A T. A. Bukharina %A V. P. Golubyatnikov %T The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 142-153 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a10/ %G ru %F SJIM_2023_26_3_a10
D. P. Furman; T. A. Bukharina; V. P. Golubyatnikov. The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 142-153. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a10/
[1] Chasman D., Fotuhi Siahpirani A., Roy S., “Network-based approaches for analysis of complex biological systems”, Curr. Opin. Biotechnol, 39 (2016), 157–166 | DOI
[2] Emmert-Streib F., Dehmer M., “Networks for systems biology: conceptual connection of data and function”, IET Syst. Biol., 5:3 (2011), 185–207 | DOI
[3] Emmert-Streib F., Glazko G.V., “Network biology: a direct approach to study biological function”, Wiley Interdiscip. Rev. Syst. Biol. Med., 3:4 (2011), 379–91 | DOI
[4] Schlitt T., Palin K., Rung J., Dietmann S., Lappe M., Ukkonen E., Brazma A., “From gene networks to gene function”, Genome Res., 13:12 (2003), 2568–2576 | DOI
[5] Zhu X., Gerstein M., Snyder M., “Getting connected: analysis and principles of biological networks”, Genes Dev., 21:9 (2007), 1010–1024 | DOI
[6] Akinshin A.A., Bukharina T.A., Golubyatnikov V.P., Furman D.P., “Mathematical modeling of the interaction of two cells in the proneural cluster of the wing imaginal disk D.melanogaster”, Sib. Zh. Chist. Prikl. Mat., 14:4 (2014), 3–10 (in Russian) | Zbl
[7] Bukharina T.A., Furman D.P., Golubyatnikov V.P., “A model study of the morphogenesis of D. melanogaster mechanoreceptors: The central regulatory circuit”, J. Bioinformat. Comput. Biology, 13:01 (2015), 1540006, 15 pp. | DOI
[8] Ayupova N.B., Golubyatnikov V.P., “A Three-cell Model of the Initial Stage of Development of a Proneural Cluster”, J. Appl. Ind. Math., 11:2 (2017), 168–173 | DOI | DOI | MR | Zbl
[9] Buharina T.A., Akin'shin A.A., Golubjatnikov V.P., Furman D.P., “Mathematical and numerical models of the Central Regulatory Circuit of the mechanoreceptors morphogenesis system of Drosophila”, Sib. Zhurn. Indust. Mat., 23:2 (2020), 41–50 (in Russian) | DOI | MR | Zbl
[10] Bukharina T.A., Golubyatnikov V.P., Furman D.P., “Gene Network Controlling the Morphogenesis of D. melanogaster Macrochaetes: An Expanded Model of the Central Regulatory Circuit”, Russian Journal of Developmental Biology, 47:5 (2016), 288–293 | DOI | DOI
[11] Yamasaki Y., Lim Y.M., Niwa N., Hayashi S., Tsuda L., “Robust specification of sensory neurons by dual functions of charlatan, a Drosophila NRSF/REST-like repressor of extramacrochaetae and hairy”, Genes Cells, 16:8 (2011), 896–909 | DOI
[12] García-Bellido A., de Celis J.F., “The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development”, Genetics, 182:3 (2009), 631–639 | DOI
[13] Ghysen A., Thomas R., “The formation of sense organs in Drosophila: a logical approach”, BioEssays, 25 (2003), 802–807 | DOI
[14] System computer biology, Izd-vo SB RAN, Novosibirsk, 2008 (in Russian)
[15] Golubyatnikov V.P., Kazantsev M.V., Kirillova N.E., Bukharina T.A., Furman D.P., “Mathematical and numerical models of two asymmetric gene networks”, Sib. Electron. Math. Reports, 15 (2018), 1271–1283 | DOI | MR | Zbl
[16] Akinshin A.A., Ayupova N.B., Golubyatnikov V.P., Kirillova N.E., Podkolodnaya O.A., Podkolodnyy N.L., “On a numerical model of a circadian oscillator”, Numer. Anal. Appl., 15:3 (2022), 187–196 | DOI | MR
[17] Golubyatnikov V.P., Akinshin A.A., Ayupova N.B., Minushkina L.S., “Stratifications and foliations in phase portraits of gene network models”, Vavilov J. Genetics and Breeding, 26:8 (2022), 758–764 | DOI | MR
[18] Chang P.J., Hsiao Y.L., Tien A.C., Li Y.C., Pi H., “Negative-feedback regulation of proneural proteins controls the timing of neural precursor division”, Development, 135:18 (2008), 302–3030 | DOI
[19] Anikonov Yu.E., Gölgeleyen İ., Yildiz M., “Identification problems for systems of nonlinear evolution equations and functional equations”, Adv. Differ. Equ., 1 (2016), 152 | DOI | MR
[20] Moscoso del Prado J., García-Bellido A., “Genetic regulation of the achaete-scute complex of Drosophila melanogaster”, Wilehm Roux Arch. Dev. Biology, 193:4 (1984), 242–245 | DOI
[21] Escudero L.M., Caminero E., Schulze K.L., Bellen H.J., Modolell J., “Charlatan, a Zn-finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila”, Development, 132:6 (2005), 1211–1222 | DOI
[22] Nolo R., Abbott L.A., Bellen H.J., “Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila”, Cell, 102:3 (2000), 349–362 | DOI
[23] Roark M., Sturtevant M.A., Emery J., Vaessin H., Grell E., Bier E., “scratch, a pan-neural gene encoding a zinc finger protein related to snail, promotes neuronal development”, Genes Dev., 9:19 (1995), 2384–2398 | DOI
[24] Agol I.J., “Step Allelomorphism in D. melanogaster”, Genetics, 16:3 (1931), 254–266 | DOI
[25] Dubinin N.P., “Step-allelomorphism in D. melanogaster. The allelomorphs achaete 2- scute 10, achaete 1-scute 11 and achaete 3-scute 13”, J. Genet., 25:2 (1932), 163–181 | DOI
[26] García-Bellido A., de Celis J.F., “The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development”, Genetics, 182:3 (2009), 631–639 | DOI
[27] Ghysen A., Dambly-Chaudière C., “From DNA to form: the achaete-scute complex”, Genes Dev., 2:5 (1988), 495–501 | DOI
[28] Usui K., Goldstone C., Gibert J.M., Simpson P., “Redundant mechanisms mediate bristle patterning on the Drosophila thorax”, Proc. Natl. Acad. Sci. USA, 105:51 (2008), 20112–20117 | DOI
[29] Cabrera C.V., Alonso M.C., Huikeshoven H., “Regulation of scute function by extramacrochaete in vitro and in vivo”, Development, 120:12 (1994), 3595–603 | DOI
[30] Acar M., Jafar-Nejad H., Giagtzoglou N., Yallampalli S., David G., He Y., Delidakis C., Bellen H.J., “Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator”, Development, 133:10 (2006), 1979–1989 | DOI
[31] Pi H., Wu H.J., Chien C.T., “A dual function of phyllopod in Drosophila external sensory organ development: cell fate specification of sensory organ precursor and its progeny”, Development, 128:14 (2001), 2699–2710 | DOI
[32] Ramat A., Audibert A., Louvet-Vallée S., Simon F., Fichelson P., Gho M., “Escargot and Scratch regulate neural commitment by antagonizing Notch activity in Drosophila sensory organs”, Development, 143:16 (2016), 3024–3034 | DOI